A fusion of biology, statistics, and computer science, the MSc in Bioinformatics programme explores the development and application of computational solutions for analysing and handling biological and biomedical data. A successful bioinformatics solution combines theoretical and practical knowledge from several areas of science, including biology, statistics, and computer science – a network of competencies that students will acquire through this programme.

FINDING SOLUTIONS

The field of bioinformatics plays a key role in modern biology and biomedicine, fields in which collecting and analysing large data sets is essential. To address the challenges of big data in modern biology and biomedicine, a bioinformatician must combine practical and theoretical skills in statistical modelling and computer programming with a deep knowledge of biology and biomedicine. This programme gives students these skill-sets.

Teaching is greatly influenced by the innovative bioinformatics research taking place at Aarhus University, where all lecturers are also active researchers. AU has strong research groups within many areas of bioinformatics, including evolutionary bioinformatics (the study of how and in what way genomes or hereditary material in organisms develop over the course of time) and medical bioinformatics (the study of the correlations between diseases and genetic factors).

The bioinformatics programme at AU is based at the Bioinformatics Research Centre (BiRRC), which focuses on the challenges involved in large-scale genomics and population genetics, including statistical modelling, algorithmic development, machine learning, and high-performance computing.

STUDENT LIFE

Bioinformatics students are affiliated with the Bioinformatics Research Centre, a vibrant community with lots of regular academic and social activities for both students and staff. Students meet their peers from the other AU science programmes through joint lectures, and participate in activities with students from programmes such as biology or computer science. A number of student organisations also arrange academic activities, as well as excursions, celebrations, and social get-togethers.

CAREERS

Graduates with a Master’s in Bioinformatics are equipped not only to work as bioinformatics specialists in the biotechnology industry, but also in additional areas in which computational skills in analysing large amounts of data are essential. They are also in demand among employers in the IT industry as potential software developers.

PLACE OF STUDY

Aarhus

ANNUAL TUITION FEE

EU/EEA/Swiss citizens: FREE

Others: EUR 14,500

WWW

masters.au.dk/bioinformatics
MSC IN BIOINFORMATICS*
COMPUTATIONAL SOLUTIONS FOR BIOLOGICAL AND BIOMEDICAL PROBLEMS

ADMISSION REQUIREMENTS
Students are qualified to apply if their bachelor’s degree contains 20 ECTS within the fields of mathematics, probability theory, and statistics, 20 ECTS within either programming and algorithmics or molecular biology and genetics, and an additional 60 ECTS within one of the above topics.

SELECTION CRITERIA
As the Master’s programme admits only a limited number of students each year, meeting the admission requirements does not in itself guarantee admission to the programme. Student places are allocated on the basis of an overall assessment. In evaluating qualified applicants, the admissions committee assesses applicants according to the following criteria: academic background; overall grade level of bachelor’s degree; grades achieved on relevant courses; and relevant courses (measured in credit units) included in the bachelor’s degree.

Relevant courses include core courses within the subject areas of mathematics, probability theory, and statistics, programming and algorithmics, and molecular biology and genetics.

PROGRAMME STRUCTURE
With a combination of two specialisations, elective courses, and projects, there are many ways to structure your Bioinformatics Master’s programme. All students must write a thesis (30 ECTS) and a 10 ECTS project. All students must also follow a mandatory course in either computational thinking or molecular evolution depending on their background. The mandatory course can be part of a specialisation, which makes it possible to have one more elective course. The 10 ECTS project can be scheduled in any semester, which makes it possible to study abroad during the third semester.

<table>
<thead>
<tr>
<th>1ST SEMESTER</th>
<th>2ND SEMESTER</th>
<th>3RD SEMESTER</th>
<th>4TH SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialisation 1</td>
<td>Elective Courses</td>
<td>THESIS</td>
<td></td>
</tr>
<tr>
<td>Specialisation 2</td>
<td>Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandatory Course</td>
<td>Elective Course</td>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>30 ECTS</td>
<td>30 ECTS</td>
<td>30 ECTS</td>
<td>30 ECTS</td>
</tr>
</tbody>
</table>

SPECIALISATIONS
- Algorithms and Programming
- Machine Learning and Data Science
- Molecular Evolution and Genomics

PLACE OF STUDY
Aarhus

ANNUAL TUITION FEE
EU/EEA/Swiss citizens: FREE
Others: EUR 14,500

WWW
masters.au.dk/bioinformatics

Fees are subject to change. See international.au.dk