

Chapter 7 Model Implementation

0.1 Introduction ...Error! Bookmark not defined.

0.2 A Section Title ...Error! Bookmark not defined.

Demonstration: <Type title of demo here.> Error! Bookmark not defined.

Exercises ... Error! Bookmark not defined.

0.3 Chapter Summary ...Error! Bookmark not defined.

0.4 Solutions ...Error! Bookmark not defined.

Solutions to Exercises ... Error! Bookmark not defined.

Solutions to Student Activities (Polls/Quizzes) Error! Bookmark not defined.

7-2 Chapter 7 Model Implementation

 7.1 Introduction 7-3

7.1 Introduction

33

Model Implementation

3

inputs predictions

Predictions might be

added to a data source

inside and outside of

SAS Enterprise Miner.

...

After you train and compare predictive models, one model is selected to represent the association

between the inputs and the target. After it is selected, this model must be put to use. The contribution

of SAS Enterprise Miner to model implementation is a scoring recipe capable of adding predictions

to any data set structured in a manner similar to the training data.

SAS Enterprise Miner offers two options for model implementation.

 Internally scored data sets are created by combining the Score tool with a data set identified

for scoring.

 A copy of the scored data set is stored on the SAS Foundation server assigned to your project.

If the data set to be scored is very large, you should consider scoring the data outside the

SAS Enterprise Miner environment and use the second deployment option.

 Scoring code modules are used to generate predicted target values in environments outside of

SAS Enterprise Miner. SAS Enterprise Miner can create scoring code in the SAS, C, and Java

programming languages. The SAS language code can be embedded directly into a SAS Foundation

application to generate predictions. The C and Java language code must be compiled. The C code

should compile with any C compiler that supports the ISO/IEC 9899 International Standard for

Programming Languages -- C.

7-4 Chapter 7 Model Implementation

7.2 Internally Scored Data Sets

To create an internally scored data set, you need to define a Score data source, integrate the Score data

source and Score tool into your process flow diagram, and (optionally) relocate the scored data set

to a library of your choice.

 7.2 Internally Scored Data Sets 7-5

Creating a Score Data Source

Creating a score data source is similar to creating a modeling data source.

1. Right-click Data Sources in the Project panel and select Create Data Source. The Data Source

Wizard opens.

2. Select the table ScorePVA97NK in the AAEM library.

3. Select Next > until you reach Data Source Wizard -- Step 6 of 7 Data Source Attributes.

4. Select Score as the role.

5. Select Next > to move to Step 7.

6. Select Finish. You now have a data source that is ready for scoring.

7-6 Chapter 7 Model Implementation

Scoring with the Score Tool

The Score tool attaches model predictions from a selected model to a score data set.

1. Select the Assess tab.

2. Drag a Score tool into the diagram workspace.

3. Connect the Model Comparison node to the Score node as shown.

 7.2 Internally Scored Data Sets 7-7

The Score node creates predictions using the model deemed best by the Model Comparison node (in

this case, the Regression model).

 If you want to create predictions using a specific model, either delete the connection to the

Model Comparison node of the models that you do not want to use, or connect the Score node

directly to the desired model and continue as described below.

4. Drag the ScorePVA97NK data source into the diagram workspace.

5. Connect the ScorePVA97NK data source node to the Score node as shown.

7-8 Chapter 7 Model Implementation

6. Run the Score node and view the results. The Results - Score window opens.

7. Maximize the Output window.

The item of greatest interest is a table of new variables added to the Score data set.

8. Go to line 150.

9. Close the Results window.

 7.2 Internally Scored Data Sets 7-9

Exporting a Scored Table (Self-Study)

1. Select Exported Data from the Score node Properties panel.

The Exported Data - Score dialog box opens.

2. Select the Score table.

7-10 Chapter 7 Model Implementation

3. Select Explore…. The Explore window opens with a 20,000-row sample of the

EMWS2.Score_SCORE data set (the internal name in SAS Enterprise Miner for the scored

ScorePVA97NK data).

This scored table is situated on the SAS Foundation server in the current project directory. You might

want to place a copy of this table in another location. The easiest way to do this is with a SAS code

node.

4. Close the Explore window.

5. Select the Utility tab.

6. Drag a SAS Code node into the Diagram workspace.

 7.2 Internally Scored Data Sets 7-11

7. Connect the Score node to the SAS Code node as shown.

8. Select Code Editor in the SAS Code node’s Properties panel.

7-12 Chapter 7 Model Implementation

The Training Code window opens.

The Training Code window enables you to add new functionality to SAS Enterprise Miner by

accessing the scripting language of SAS.

 7.2 Internally Scored Data Sets 7-13

9. Type the following program in the Training Code window:

data AAEM61.ExportedScoreData;

 set &EM_IMPORT_SCORE;

run;

This program creates a new table named ExportedScoreData in the AAEM61 library.

10. Close the Training Code window and save the changes.

11. Run the SAS Code node. You do not need to view the results.

7-14 Chapter 7 Model Implementation

12. Select View Explorer… from the SAS Enterprise Miner menu bar. The Explorer window opens.

13. Select the Aaem61 library.

The Aaem61 library contains the Exportedscoredata table created by your SAS Code node.

You can modify the SAS Code node to place the scored data in any library that is visible to the SAS

Foundation server.

14. Close the Explorer window.

 7.3 Score Code Modules 7-15

7.3 Score Code Modules

Model deployment usually occurs outside of SAS Enterprise Miner and sometimes even outside of SAS.

To accommodate this need, SAS Enterprise Miner is designed to provide score code modules to create

predictions from properly prepared tables. In addition to the prediction code, the score code modules

include all the transformations that are found in your modeling process flow. You can save the code as

a SAS, C, or Java program.

7-16 Chapter 7 Model Implementation

Creating a SAS Score Code Module

The SAS Score Code module is opened by default when you open the Score node.

1. Open the Score node Results window.

2. Maximize the SAS Code window.

The SAS Code window shows the SAS DATA step code that is necessary to append predictions from the

selected model (in this case, the Regression Model) to a score data set. Each node in the process flow can

contribute to the DATA step code. The following list describes some highlights of the generated SAS

code:

 Go to line 12. This code removes the spurious zero from the median income input.

--;

* TOOL: Extension Class;

* TYPE: MODIFY;

* NODE: Repl;

--;

* ;

* Variable: DemMedIncome ;

* ;

Label REP_DemMedIncome = "Replacement: DemMedIncome ";

REP_DemMedIncome =DemMedIncome ;

if DemMedIncome ne . and DemMedIncome <1 then REP_DemMedIncome = . ;

 Go to line 36. This code takes the log transformation of selected inputs.

--;

* TRANSFORM: GiftAvg36 , log(GiftAvg36 + 1);

--;

label LOG_GiftAvg36 = 'Transformed: Gift Amount Average 36 Months';

if GiftAvg36 + 1 > 0 then LOG_GiftAvg36 = log(GiftAvg36 + 1);

else LOG_GiftAvg36 = .;

--;

* TRANSFORM: GiftAvgAll , log(GiftAvgAll + 1);

--;

label LOG_GiftAvgAll = 'Transformed: Gift Amount Average All Months';

if GiftAvgAll + 1 > 0 then LOG_GiftAvgAll = log(GiftAvgAll + 1);

else LOG_GiftAvgAll = .;

.

.

.

 7.3 Score Code Modules 7-17

 Go to line 84. This code replaces the levels of the StatusCat96NK input.

--;

* TOOL: Extension Class;

* TYPE: MODIFY;

* NODE: Repl2;

--;

* ;

* Defining New Variables;

* ;

Length REP_StatusCat96NK $5;

Label REP_StatusCat96NK = "Replace:Status Category 96NK";

REP_StatusCat96NK= StatusCat96NK;

* ;

* Replace Specific Class Levels ;

* ;

length _UFormat200 $200;

drop _UFORMAT200;

_UFORMAT200 = " ";

* ;

* Variable: StatusCat96NK;

* ;

if strip(StatusCat96NK) = "A" then

REP_StatusCat96NK="A";

if strip(StatusCat96NK) = "S" then

REP_StatusCat96NK="A";

if strip(StatusCat96NK) = "F" then

REP_StatusCat96NK="N";

if strip(StatusCat96NK) = "N" then

REP_StatusCat96NK="N";

if strip(StatusCat96NK) = "E" then

REP_StatusCat96NK="L";

if strip(StatusCat96NK) = "L" then

REP_StatusCat96NK="L";

7-18 Chapter 7 Model Implementation

 Go to line 118. This code replaces missing values and creates missing value indicators.

--;

* TOOL: Imputation;

* TYPE: MODIFY;

* NODE: Impt;

--;

*;

*MEAN-MEDIAN-MIDRANGE AND ROBUST ESTIMATES;

*;

label IMP_DemAge = 'Imputed: Age';

IMP_DemAge = DemAge;

if DemAge = . then IMP_DemAge = 59.262912087912;

label IMP_LOG_GiftAvgCard36 = 'Imputed: Transformed: Gift Amount Average Card 36 Months';

IMP_LOG_GiftAvgCard36 = LOG_GiftAvgCard36;

if LOG_GiftAvgCard36 = . then IMP_LOG_GiftAvgCard36 = 2.5855317177381;

label IMP_REP_DemMedIncome = 'Imputed: Replacement: DemMedIncome';

IMP_REP_DemMedIncome = REP_DemMedIncome;

if REP_DemMedIncome = . then IMP_REP_DemMedIncome = 53570.8504928806;

*;

*INDICATOR VARIABLES;

*;

label M_DemAge = "Imputation Indicator for DemAge";

if DemAge = . then M_DemAge = 1;

else M_DemAge= 0;

label M_LOG_GiftAvgCard36 = "Imputation Indicator for LOG_GiftAvgCard36";

if LOG_GiftAvgCard36 = . then M_LOG_GiftAvgCard36 = 1;

else M_LOG_GiftAvgCard36= 0;

label M_REP_DemMedIncome = "Imputation Indicator for REP_DemMedIncome";

if REP_DemMedIncome = . then M_REP_DemMedIncome = 1;

else M_REP_DemMedIncome= 0;

 7.3 Score Code Modules 7-19

 Go to line 160. This code comes from the Regression node. It is this code that actually adds the

predictions to a Score data set.

.

.

.

7-20 Chapter 7 Model Implementation

 Go to line 290. This block of code comes from the Model Comparison node. It adds demi-decile bin

numbers to the scored output. For example, bin 1 corresponds to the top 5% of the data as scored by the

Regression model, bin 2 corresponds to the next 5%, and so on.

--;

* TOOL: Model Compare Class;

* TYPE: ASSESS;

* NODE: MdlComp;

--;

if (P_TargetB1 ge 0.09198928166881) then do;

b_TargetB = 1;

end;

else

if (P_TargetB1 ge 0.08014055773524) then do;

b_TargetB = 2;

end;

else

if (P_TargetB1 ge 0.07027014765811) then do;

b_TargetB = 3;

end;

 .

 .

 .

 7.3 Score Code Modules 7-21

 Go to line 380. This block of code comes from the Score node. It adds the following standardized

variables to the scored data set:

EM_CLASSIFICATION Prediction for TargetB

EM_DECISION Recommended Decision for TargetB

EM_EVENTPROBABILITY Probability for Level 1 of Target

EM_PROBABILITY Probability of Classification

EM_PROFIT Expected Profit for TargetB

EM_SEGMENT Segment

--;

* TOOL: Score Node;

* TYPE: ASSESS;

* NODE: Score;

--;

--;

* Score: Creating Fixed Names;

--;

LABEL EM_SEGMENT = 'Segment';

EM_SEGMENT = b_TargetB;

LABEL EM_EVENTPROBABILITY = 'Probability for level 1 of TargetB';

EM_EVENTPROBABILITY = P_TargetB1;

LABEL EM_PROBABILITY = 'Probability of Classification';

EM_PROBABILITY = max(

P_TargetB1

,

P_TargetB0

);

 .

 .

 .

 To use this code, you must embed it in a DATA step. The easiest way to do this is by saving it

to as a SAS code file and including it in your DATA step.

3. Select File Save As… to save this code to a location of your choice.

7-22 Chapter 7 Model Implementation

Creating Other Score Code Modules

To access scoring code for languages other than SAS, use the following procedure:

1. Select View Scoring C Score Code. The C Score Code window opens.

There are four parts to the C Score Code window. The actual C score code part is accessible from the

menu at the bottom of the C Score Code window.

 7.3 Score Code Modules 7-23

2. Select View Scoring Java Score Code. The Java Score Code window opens.

There are five parts to the Java Score Code window. The actual Java score code part is accessible

from the menu at the bottom of the Java Score Code window.

7-24 Chapter 7 Model Implementation

Exercises

1. Scoring Organics Data

a. Create a Score data source for the ScoreOrganics data.

b. Score the ScoreOrganics data using the model selected with the Model Comparison node.

 7.4 Chapter Summary 7-25

7.4 Chapter Summary

The Score node is used to score new data inside SAS Enterprise Miner and to create scoring modules for

use outside SAS Enterprise Miner. The Score node adds predictions to any data source with a role of

Score. This data source must have the same inputs as the training data. A scored data source is stored

within the project directory. You can use a SAS Code tool to relocate it to another library.

The Score tool creates score code modules in the SAS, C, and Java languages. These score code modules

can be saved and used outside of SAS Enterprise Miner.

1111

Model Implementation Tools Review

11

Add predictions to Score data sources;

and create SAS, C, and Java score code

modules.

Create a Score data source.

Use SAS scripting language to export

scored data outside a SAS Enterprise

Miner project.

7-26 Chapter 7 Model Implementation

7.5 Solutions to Exercises

1. Scoring Organics Data

a. Create a Score data source for the ScoreOrganics data.

1) Select File New Data Source.

2) Proceed to Step 2 of the Data Source Wizard by selecting Next >.

3) Select the AAEM61.SCOREORGANICS data set.

4) Proceed to the final step of the Data Source Wizard.

 7.5 Solutions to Exercises 7-27

5) Select Score as the role.

6) Select Finish.

b. Score the ScoreOrganics data using the model selected with the Model Comparison node.

1) Connect a Score tool to the Model Comparison node.

2) Connect a ScoreOrganics data source to the Score node.

3) Run the Score node.

7-28 Chapter 7 Model Implementation

4) Browse the Exported data from the Score node to confirm the scoring process.

A successfully scored data set features predicted probabilities and prediction decisions in the

last three columns.

