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4.1 Introduction

NSRS A O . |
Model Essentials — Regressions

Predict new cases. Prediction
formula

Select useful inputs. Sequential
selection

Best model

Optimize complexity. from sequence

3

Regressions offer a different approach to prediction compared to decision trees. Regressions, as
parametric models, assume a specific association structure between inputs and target. By contrast, trees,
as predictive algorithms, do not assume any association structure; they simply seek to isolate

concentrations of cases with like-valued target measurements.

The regression approach to the model essentials in SAS Enterprise Miner is outlined over the following
pages. Cases are scored using a simple mathematical prediction formula. One of several heuristic
sequential selection techniques is used to pick from a collection of possible inputs and creates a series
of models with increasing complexity. Fit statistics calculated from validation data select the best model

from the sequence.
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Model Essentials — Regressions

_» Predict new cases.

Prediction
formula

1

Regressions predict cases using a mathematical equation involving values of the input variables.
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Linear Regression Prediction Formula

N N

N _ N
Yy =Wp+WpX; +WoyX,

Choose intercept and parameter estimates to minimize:

D (i-%; )2
training
data

In standard linear regression, a prediction estimate for the target variable is formed from a simple linear
combination of the inputs. The intercept centers the range of predictions, and the remaining parameter
estimates determine the trend strength (or slope) between each input and the target. The simple structure
of the model forces changes in predicted values to occur in only a single direction (a vector in the space
of inputs with elements equal to the parameter estimates).

Intercept and parameter estimates are chosen to minimize the squared error between the predicted and
observed target values (least squares estimation). The prediction estimates can be viewed as a linear
approximation to the expected (average) value of a target conditioned on observed input values.

Linear regressions are usually deployed for targets with an interval measurement scale.
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Logistic Regression Prediction Formula

N

p N N N
Iog(l_ﬁ) =Wp + Wy Xy + Wy X,

8

Logistic regressions are closely related to linear regressions. In logistic regression, the expected value

of the target is transformed by a link function to restrict its value to the unit interval. In this way, model
predictions can be viewed as primary outcome probabilities. A linear combination of the inputs generates
a logit score, the log of the odds of primary outcome, in contrast to the linear regression’s direct

prediction of the target.

yd If your interest is ranking predictions, linear and logistic regressions yield virtually identical
results.
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T AT .
Logit Link Function

N

p N N N
Iog(l_ﬁ) =Wp + Wy Xy + Wy X,

The logit link function transforms
probabilities (between 0 and 1) to logit
scores (between =« and +).

9

For binary prediction, any monotonic function that maps the unit interval to the real number line can
be considered as a link. The logit link function is one of the most common. Its popularity is due, in part,
to the interpretability of the model.

T AT .
Logit Link Function

N

p N N A A
09 (7=5) = Wo *+ W, + i, x,=logit( )

1
1 + g-logit(P)

D=

To obtain prediction estimates, the logit equation is solved for .

11

The predictions can be decisions, rankings, or estimates. The logit equation produces a ranking or logit
score. To get a decision, you need a threshold. The easiest way to get a meaningful threshold is to convert
the prediction ranking to a prediction estimate. You can obtain a prediction estimate using a
straightforward transformation of the logit score, the logistic function. The logistic function is simply the
inverse of the logit function. You can obtain the logistic function by solving the logit equation for p.
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R AT .
Simple Prediction Illustration — Regressions

Predict dot color for each x; and x,.

. A A A A
logit(p ) = Wo + Wy Xq + Wy X

1

1 + eogit(p)

A
p=

You need intercept and
parameter estimates.

14

To demonstrate the properties of a logistic regression model, consider the two-color prediction problem

introduced in Chapter 3. As before, the goal is to predict the target color, based on the location in the unit

square. To make use of the prediction formulation, you need estimates of the intercept and other model

parameters.

R AT .
Simple Prediction Illustration — Regressions

. A A A A
logit(p ) = Wy + Wy X4 + W3 X,
1

A I —
P 1 + e'logit( p)

Find parameter estimates
by maximizing

> log(p) + Y. log(1 - p)

16

The presence of the logit link function complicates parameter estimation. Least squares estimation is
abandoned in favor of maximum likelihood estimation. The likelihood function is the joint probability
density of the data treated as a function of the parameters. The maximum likelihood estimates are the

values of the parameters that maximize the probability of obtaining the training sample.



4-8 Chapter 4 Introduction to Predictive Modeling: Regressions

R AT .
Simple Prediction Illustration — Regressions

logit( p) =081+ 092x, + 111 x,

a1

P= 1 + elogit(p)

Using the maximum
likelihood estimates, the
prediction formula assigns a
logit score to each x, and X,.

18

Parameter estimates are obtained by maximum likelihood estimation. These estimates can be used in the
logit and logistic equations to obtain predictions. The plot on the right shows the prediction estimates
from the logistic equation. One of the attractions of a standard logistic regression model is the simplicity
of its predictions. The contours are simple straight lines. (In higher dimensions, they would be
hyperplanes.)
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T AT .
4.01 Multiple Choice Poll

What is the logistic regression prediction for the indicated
point?

a.-0.243

b. 0.56

c. yellow

d. It depends ...

logit( p) =081+ 092x, + 111 x,
1

1 + glogit(p)

A
p=

20

To score a new case, the values of the inputs are plugged into the logit or logistic equation. This action
creates a logit score or prediction estimate. Typically, if the prediction estimate is greater than 0.5 (or
equivalently, the logit score is positive), cases are usually classified to the primary outcome. (This
assumes an equal misclassification cost.)

The answer to the question posed is, of course, it depends.

o Answer A, the logit score, is reasonable if the goal is ranking.

o Answer B, the prediction estimate from the logistic equation, is appropriate if the goal is estimation.
o Answer C, a classification, is a good choice if the goal is deciding dot color.
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Regressions: Beyond the Prediction Formula

_~ Manage missing values.

_~ Interpret the model.

_~ Handle extreme or unusual values.
_~ Use nonnumeric inputs.

Account for nonlinearities.

22

While the prediction formula would seem to be the final word in scoring a new case with a regression
model, there are actually several additional issues that must be addressed.

What should be done when one of the input values used in the prediction formula is missing? You
might be tempted to simply treat the missing value as zero and skip the term involving the missing
value. While this approach can generate a prediction, this prediction is usually biased beyond reason.

How do you interpret the logistic regression model? Certain inputs influence the prediction more than
others. A means to quantify input importance is needed.

How do you score cases with unusual values? Regression models make their best predictions for cases
near the centers of the input distributions. If an input can have (on rare occasion) extreme or outlying
values, the regression should respond appropriately.

What value should be used in the prediction formula when the input is not a number? Categorical
inputs are common in predictive modeling. They did not present a problem for the rule-based
predictions of decision trees, but regression predictions come from algebraic formulas that require
numeric inputs. (You cannot multiply marital status by a number.) A method to include nonnumeric
data in regression is needed.

What happens when the relationship between the inputs and the target (or rather logit of the target)
is not a straight line? It is preferable to be able to build regression models in the presence of nonlinear
(and even nonadditive) input target associations.
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R AT .
Regressions: Beyond the Prediction Formula

_» Manage missing values.

23

yd The above issues affect both model construction and model deployment. The first of these,
handling missing values, is dealt with immediately. The remaining issues are addressed, in turn,
at the end of this chapter.

T O A . |
Missing Values and Regression Modeling
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Problem 1: Training data cases with missing
values on inputs used by a regression model
are ignored.

24

Missing values present two distinct problems. The first relates to model construction. The default method
for treating missing values in most regression tools in SAS Enterprise Miner is complete-case analysis.
In complete-case analysis, only those cases without any missing values are used in the analysis.
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Missing Values and Regression Modeling

Consequence: Missing values can
significantly reduce your amount of training
data for regression modeling!

26

Even a smattering of missing values can cause an enormous loss of data in high dimensions. For instance,
suppose that each of the k input variables is missing at random with probability o. In this situation, the
expected proportion of complete cases is as follows:

(1-af

Therefore, a 1% probability of missing (a=.01) for 100 inputs leaves only 37% of the data for analysis,
200 leaves 13%, and 400 leaves 2%. If the “missingness” were increased to 5% (a.=.05), then <1% of the
data would be available with 100 inputs.
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R AT .
Missing Values and the Prediction Formula

logit(p) = -0.81 +0.92 - x, +1.11- X,

Predict: (x1, x2) =(0.3,?)

Problem 2: Prediction formulas cannot
score cases with missing values.

27

NSRS A O . |
Missing Values and the Prediction Formula

logit(p) = ?

Problem 2: Prediction formulas cannot
score cases with missing values.

30

The second missing value problem relates to model deployment or using the prediction formula. How

would a model built on the complete cases score a new case if it had a missing value? To decline to score

new incomplete cases would be practical only if there were a very small number of missing values.
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Missing Value Issues

_» Manage missing values.

Problem 1: Training data cases with missing
values on inputs used by a regression model
are ignored.

Problem 2: Prediction formulas cannot
score cases with missing values.

31

A remedy is needed for the two problems of missing values. The appropriate remedy depends on the
reason for the missing values.
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Missing Value Causes
_» Manage missing values.

1 Non-applicable measurement
L1 No match on merge

[ 1] Non-disclosed measurement

33

Missing values arise for a variety of reasons. For example, the time since last donation to a card campaign
is meaningless if someone did not donate to a card campaign. In the PVA97NK data set, several
demographic inputs have missing values in unison. The probable cause was no address match for the
donor. Finally, certain information, such as an individual’s total wealth, is closely guarded and is often

not disclosed.

Missing Value Remedies

_» Manage missing values.

1| Non-applicable measurement Symn
1 No match on merge =
Estimation

| Non-disclosed measurement = Xi = f(Xa - Xp)

34
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The primary remedy for missing values in regression models is a missing value replacement strategy.
Missing value replacement strategies fall into one of two categories.

Synthetic
distribution
methods

Estimation
methods

use a one-size-fits-all approach to handle missing values. Any case with a
missing input measurement has the missing value replaced with a fixed
number. The net effect is to modify an input’s distribution to include a
point mass at the selected fixed number. The location of the point mass in
synthetic distribution methods is not arbitrary. Ideally, it should be chosen
to have minimal impact on the magnitude of an input’s association with the
target. With many modeling methods, this can be achieved by locating the
point mass at the input’s mean value.

eschew the one-size-fits-all approach and provide tailored imputations for
each case with missing values. This is done by viewing the missing value
problem as a prediction problem. That is, you can train a model to predict
an input’s value from other inputs. Then, when an input’s value is
unknown, you can use this model to predict or estimate the unknown
missing value. This approach is best suited for missing values that result
from a lack of knowledge, that is, no-match or nondisclosure, but it is not
appropriate for not-applicable missing values.

Because predicted response might be different for cases with a missing input value, a binary imputation
indicator variable is often added to the training data. Adding this variable enables a model to adjust its
predictions in the situation where "missingness” itself is correlated with the target.
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E @) Managing Missing Values

The demonstrations in this chapter build on the demonstrations of Chapters 2 and 3. At this point, the
process flow diagram has the following structure:

P =] 3

-

Luu Predictive Analysis

- é gDecision Tree

- | Eieplacemenl
& -

A - é gprobability Tree

hd
= | —’”ﬁﬁ“ﬂ@ - @100%|g§99

Data Assessment

Continue the analysis at the Data Partition node. As discussed above, regression requires that a case have
a complete set of input values for both training and scoring. Follow these steps to examine the data status

after the partition.

1. Select the Data Partition node.

2. Select Exported Data = j from the Data Partition node property sheet.

Frope Yalue

Mode [D
Imported Data

ariahles
Qutput Type Data
Paritioning Method Default
12345
-Training A0.0
-Walidation 50.0

‘Test 0.0
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The Exported Data window opens.

3. Select the TRAIN data port and select Explore....

Y Exported DVata- DatalPartition

Port Tahle | Role | Data Exists
RAIN EmMWS Part_TRAIM Train Yes
WALIDATE EMWS. Part_WALIDATE Yalidate Yes
TEST EMYWS.Par_TEST Test Mo
Browse... H Exzplore... H Properties... || 0K |

There are several inputs with a noticeable frequency of missing values, for example, Age and the
replaced value of median income.

EMWSTPart” TRAIN

Explore=

File Yiew Actions Window

EICITE

E}E Sample Properties

J FProperty | Yalue
Riows 4843
Columns 30
Library ErvvS
Mermber PART_TRAIMN
Type DATA
Sample Method Randaom
Fetch Size hlax
Fetched Rows 4843
Random Seed 12345

EMWS.Part_TRAIN

Status Cate..l Demngrap...|

Gender

|Hnme Owneﬂ Median Hu:uq...‘.J FPercent VET.L.J Median Inc¢.b|RepIaceme..J

100
034
035
115
136
016
01y
024
034
138
045

U

I
H
U
J
I
H
H
J
H
U

$139,200
$168,100
$234,700
143,900
$134,400
$68,200
115,100
§0
$207,900
$104,400
$70,000

27
ar
22
an
41
47
an
33
43
34
3

$38,942
71,509
§72,860
50
50
F0
63,000
50
50
54,385
50

38042 —
71508
72868

G3000

54385
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There are several ways to proceed:

¢ Do nothing. If there are very few cases with missing values, this is a viable option. The difficulty
with this approach comes when the model must predict a new case that contains a missing value.
Omitting the missing term from the parametric equation usually produces an extremely biased
prediction.

o Impute a synthetic value for the missing value. For example, if an interval input contains a missing
value, replace the missing value with the mean of the nonmissing values for the input. This
eliminates the incomplete case problem but modifies the input’s distribution. This can bias the model
predictions.

Making the missing value imputation process part of the modeling process allays the modified
distribution concern. Any modifications made to the training data are also made to the validation data
and the remainder of the modeling population. A model trained with the modified training data will
not be biased if the same modifications are made to any other data set that the model might
encounter (and the data has a similar pattern of missing values).

o Create a missing indicator for each input in the data set. Cases often contain missing values for a
reason. If the reason for the missing value is in some way related to the target variable, useful
predictive information is lost.

The missing indicator is 1 when the corresponding input is missing and 0 otherwise. Each missing
indicator becomes an input to the model. This enables modeling of the association between the target
and a missing value on an input.

Close the Explore and Exported Data windows.
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Imputation

To address missing values in the PVA97NK data set, use the following steps to impute synthetic data
values and create missing value indicators:

1. Select the Modify tab.
2. Drag an Impute tool into the diagram workspace.

3. Connect the Data Partition node to the Impute node. In the display, below, the Decision Tree
modeling nodes are repositioned for clarity.

iux Predictive Analysis

— é éprobabilil\r Tree
- é 2Decision Tree

-— | r:‘Feplacement - Data Partition

¥
|’ ﬁimpule ‘

-

2 | = |

A |ﬂ|| v ) || = |—J— ) |IDD%
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4. Select the Impute node and examine the Properties panel.

Property

Faode D

Imported Data
Exported Data
Motes

ariahles
Mon Missing Wariahles Mo

Default Input Method Count
Default Target Method  |[Mone
Marmalize Yalues

IDefault MumberVYalue
Slethod Optiohs

IRandom Seed
Tuning Farameters
Tree [mputation

Hide Original Yariables

ISlIndicator Variables

Type LInigue

|Source Imputed Variahles -
= h|

The defaults of the Impute node are as follows:
o For interval inputs, replace any missing values with the mean of the nonmissing values.
o For categorical inputs, replace any missing values with the most frequent category.

pd These are acceptable default values and are used throughout the rest of the course.

With these settings, each input with missing values generates a new input. The new input named
IMP_original_input_name will have missing values replaced by a synthetic value and nonmissing
values copied from the original input.
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Missing Indicators

Use the following steps to create missing value indicators. The settings for missing value indicators are
found in the Score property group.

Hide Original Variables

Blindicatar Variables
[Type Inigue
[Source lmputed Yariakles
-|Fale Input

1. Select Indicator Variables = Type = Unique.

2. Select Indicator Variables = Role = Input.

With these settings, new inputs named M_original_input_name will be added to the training data to
indicate the synthetic data values.
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Imputation Results

Run the Impute node and review the Results window. Three inputs had missing values.

-
o Results - Node: Impute Diagram: Predictive Analysis

File Edit View Window

[EERERN BT

E=] Imputation Summary

Yariahle Impute Imputed Indicator Impute Yalue Role Measureme |Label Humber of
Mame hiethod Wariahle Wariahle nt Level Mis=ing for
TRAIN
CemAge MEAR IMP_DemA... M_DemAge 59262891 INPUT INTERWAL  Age 1203
GiftdwgCard... MEAR IMP_Giftfg.. M_GifttwgC 14 2049IMPLT INTERWAL  Gift Amount... 810
REF_Dem... MEAR IMP_REP_... M_REP_[e.. 53570.85IMPLIT INTERWAL Replaceme... 1191

Wariable Summary

With all of the missing values imputed, the entire training data set is available for building the logistic
regression model. In addition, a method is in place for scoring new cases with missing values. (See

Chapter 7.)
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@ ) Running the Regression Node

There are several tools in SAS Enterprise Miner to fit regression or regression-like models. By far, the
most commonly used (and, arguably, the most useful) is the simply named Regression tool.

Use the following steps to build a simple regression model.
1. Select the Model tab.

2. Drag a Regression tool into the diagram workspace.

3. Connect the Impute node to the Regression node.

L. Predictive Analysis

ata Partition

_ﬁ |—:JB'\ eplacement

* %Probabilitv Tree
é %Decision Tree i

-

Bim
(=4

A | ﬂ” e ) || e |-—J— o) |100%

The Regression node can create several types of regression models, including linear and logistic. The
type of default regression type is determined by the target’s measurement level.
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4. Run the Regression node and view the results. The Results - Node: Regression Diagram window
opens.

5 Results - Mode: Regression Diagram: Predictive Analysis

File Edit “View Window

ERENER=RET

Score Rankings Overlay: TargetB :

o“ @ [ | 7 Fit statistics

||Cumulali\.-'e Lift v" Target Fit Statistics Etatistics Train wali
ahel

argetbB _AIC_ Akaike's Inf.. BE33.2 -

459 argets _ASE_ Average Sg.. 0237268 |2
E argetB _AVERR_  Awerage Err... 0667066
g2 144 argets _DFE_ Degrees of ... 4757
B argeth _DFM_ Model Degr... 86
E 1.2+ argetB _DFT_ Total Degre... 4843
5 argetB D Divisor far A... QE8E
1.0+ argetB _ERR_ Errar Functi... G461.2
! ! ! ! ! ' argeth _FPE_ Final Predic.. 0245847
0 20 40 _GU &0 100 argetB s W axirmum A 0941246

Percentile argets _MSE

Mean Squa...
af Era

0.24145

Ll Effects Plot
0.6

Diodotech
1TMAYOS

Absolute Coefficient(Sumy)

Variable Summary

Effect Number

5. Maximize the Output window by double-clicking its title bar.

The initial lines of the Output window summarize the roles of variables used (or not) by the
Regression node.

Variable Summary
ROLE LEVEL COUNT
INPUT BINARY 5
INPUT INTERVAL 20
INPUT NOMINAL 3
REJECTED INTERVAL 2
TARGET BINARY 1

The fit model has 28 inputs that predict a binary target.
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Ignore the output related to model events and predicted and decision variables. The next lines give more
information about the model, including the training data set name, target variable name, number of target
categories, and most importantly, the number of model parameters.

Model Information

Training Data Set EMWS2.IMPT_TRAIN.VIEW
DMDB Catalog WORK.REG_DMDB

Target Variable TargetB (Target Gift Flag)
Target Measurement Level Ordinal

Number of Target Categories 2

Error MBernoulli

Link Function Logit

Number of Model Parameters 86

Number of Observations 4843

Based on the introductory material about logistic regression that is presented above, you might expect to
have a number of model parameters equal to the number of input variables. This ignores the fact that a
single nominal input (for example, DemCluster) can generate scores of model parameters.

Next, consider maximum likelihood procedure, overall model fit, and the Type 3 Analysis of Effects.

The Type 3 Analysis tests the statistical significance of adding the indicated input to a model that already
contains other listed inputs. A value near 0 in the Pr > ChiSq column approximately indicates a significant
input; a value near 1 indicates an extraneous input.

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq
DemCluster 53 58.9098 0.2682
DemGender 2 0.5088 0.7754
DemHomeOwner 1 0.1630 0.6864
DemMedHomeValue 1 2.4464 0.1178
DemPctVeterans 1 5.2502 0.0219
GiftAvg36 1 1.6709 0.1961
GiftAvgAll 1 0.0339 0.8540
GiftAvgLast 1 0.0026 0.9593
GiftCnt36 1 1.2230 0.2688
GiftCntAll 1 0.1308 0.7176
GiftCntCard36 1 1.0244 0.3115
GiftCntCardAll 1 0.0061 0.9380
GiftTimeFirst 1 1.6064 0.2050
GiftTimeLast 1 21.5351 <.0001
IMP_DemAge 1 0.0701 0.7911
IMP_GiftAvgCard36 1 0.0476 0.8273
IMP_REP_DemMedIncome 1 0.1408 0.7074
M_DemAge 1 3.0616 0.0802
M_GiftAvgCard36 1 0.9190 0.3377
M_REP_DemMedIncome 1 0.6228 0.4300
PromCnt12 1 3.2335 0.0721
PromCnt36 1 1.0866 0.2972
PromCntAll 1 1.9715 0.1603
PromCntCardi12 1 0.0294 0.8639
PromCntCard36 1 0.0049 0.9441
PromCntCardAll 1 2.9149 0.0878
StatusCat96NK 5 11.3434 0.0450
StatusCatStarAll 1 1.7487 0.1860
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The statistical significance measures a range from <0.0001 (highly significant) to 0.9593 (highly

dubious). Results such as this suggest that certain inputs can be dropped without affecting the
predictive prowess of the model.

6. Restore the Output window to its original size by double-clicking its title bar. Maximize the Fit

Statistics window.

E=] Fit Statistics
Target Fit Statiztics | Statistics Train Validation | Test
Label
argetB A Akaike's Inf... BE33.2 ]
argetB _ASE_ Average S5o.. 0.237268 024381
argetB _AVERR_  Averaoe Err.. 0.667 0GR 0630861
argetB _DFE_ Degrees of .. 47a7T
argetB _DFM_ mModel Degr... a6
argetB _DFT_ Total Degre... 4343 ]
argetB _ D Divigor for A... YR36 YR36
argetB _ERR_ Error Functi... (150 I A594 821
argetB _FPE_ Final Predic... 0.2445847 ]
argetB _ iAo MaximILm A 0.941246 0.8414531
arpetB _MSE_ Mean Squa... 0.241548 0.24381
arpetB _MOBS_ Sum of Fre... 4343 4343
argetB Wy mHumber of .. a6 ]
argetB _RASE_ Foot Avera... 0.487v102 0.493771
argetB _RFPE_ Foot Final ... 0.49533 ]
argetB _RMSE_ Root Mean .. 0.481485 0493771
argetB _8BC_ Schwarz's .. 7190.935 i
argetB _8BBE_ Sum of Sgu... 2298179 2361.545
argetB =10l Sum of Cas... YEBE Q636
argetB _MISC_ Misclassific... 0411522 0431964

If the decision predictions are of interest, model fit can be judged by misclassification. If estimate
predictions are the focus, model fit can be assessed by average squared error. There appears to be
some discrepancy between the values of these two statistics in the train and validation data. This

indicates a possible overfit of the model. It can be mitigated by using an input selection procedure.

7. Close the Results window.
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4.2 Selecting Regression Inputs

NSRS A O . |
Model Essentials — Regressions

Sequential

Select useful inputs. :
selection

38

The second task that all predictive models should perform is input selection. One way to find the optimal
set of inputs for a regression is simply to try every combination. Unfortunately, the number of models to
consider using this approach increases exponentially in the number of available inputs. Such an
exhaustive search is impractical for realistic prediction problems.

An alternative to the exhaustive search is to restrict the search to a sequence of improving models. While
this might not find the single best model, it is commonly used to find models with good predictive
performance. The Regression node in SAS Enterprise Miner provides three sequential selection methods.
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T O A . |
Sequential Selection - Forward

Input p-value Entry Cutoff

H{E | |EEEE. ss—
HiE| |m| |mEn
Him| [m [EE
Him| |m (miw
H B H
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Forward selection creates a sequence of models of increasing complexity. The sequence starts with the
baseline model, a model predicting the overall average target value for all cases. The algorithm searches
the set of one-input models and selects the model that most improves upon the baseline model. It then
searches the set of two-input models that contain the input selected in the previous step and selects the
model showing the most significant improvement. By adding a new input to those selected in the previous
step, a nested sequence of increasingly complex models is generated. The sequence terminates when no
significant improvement can be made.

Improvement is quantified by the usual statistical measure of significance, the p-value. Adding terms in
this nested fashion always increases a model’s overall fit statistic. By calculating the change in the fit
statistic and assuming that the change conforms to a chi-squared distribution, a significance probability,
or p-value, can be calculated. A large fit statistic change (corresponding to a large chi-squared value) is
unlikely due to chance. Therefore, a small p-value indicates a significant improvement. When no p-value
is below a predetermined entry cutoff, the forward selection procedure terminates.
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Sequential Selection — Backward

Input p-value Stay Cutoff
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In contrast to forward selection, backward selection creates a sequence of models of decreasing
complexity. The sequence starts with a saturated model, which is a model that contains all available
inputs, and therefore, has the highest possible fit statistic. Inputs are sequentially removed from the
model. At each step, the input chosen for removal least reduces the overall model fit statistic. This is
equivalent to removing the input with the highest p-value. The sequence terminates when all remaining
inputs have a p-value that is less than the predetermined stay cutoff.
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Sequential Selection — Stepwise

Entry Cutoff

[~

Stay Cutoff

]

Stepwise selection combines elements from both the forward and backward selection procedures. The
method begins in the same way as the forward procedure, sequentially adding inputs with the smallest

p-value below the entry cutoff. After each input is added, however, the algorithm reevaluates the
statistical significance of all included inputs. If the p-value of any of the included inputs exceeds the stay

cutoff, the input is removed from the model and reentered into the pool of inputs that are available for

inclusion in a subsequent step. The process terminates when all inputs available for inclusion in the model

have p-values in excess of the entry cutoff and all inputs already included in the model have p-values

below the stay cutoff.
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((_ @) Selecting Inputs

Implementing a sequential selection method in the Regression node requires a minor change to the
Regression node settings.

1. Select Selection Model = Stepwise on the Regression node property sheet.

[ElEquation
-ain Effects B
[ Two-Factor Interacticho
“Polynomial Terms Mo
“Polynomial Degree |2
lser Terms Mo

‘Link Function

Model Options

Suppress Intercept

“Input Coding

fl ction

Selection Model Stepwise
|Selection Criterion  [Default
llse Selection Defalves
|Selection Options Q

The Regression node is now configured to use stepwise selection to choose inputs for the model.
2. Run the Regression node and view the results.
3. Maximize the Output window.

4. Hold down the CTRL key and type G. The Go To Line window opens.

Enter line number: @

|?9 | ‘ Cancel |

5. Type 79 inthe Enter line number field and select OK.



4.2 Selecting Regression Inputs

4-33

The stepwise procedure starts with Step 0, an intercept-only regression model. The value of the
intercept parameter is chosen so that the model predicts the overall target mean for every case. The
parameter estimate and the training data target measurements are combined in an objective function.
The objective function is determined by the model form and the error distribution of the target. The
value of the objective function for the intercept-only model is compared to the values obtained in
subsequent steps for more complex models. A large decrease in the objective function for the more

complex model indicates a significantly better model.

Step 0: Intercept entered.
The DMREG Procedure
Newton-Raphson Ridge Optimization
Without Parameter Scaling
Parameter Estimates

Optimization Start

Active Constraints 0 Objective Function 3356.9116922

Max Abs Gradient Element 5.707879E-12

Optimization Results

Iterations 0 Function Calls

Hessian Calls 1 Active Constraints
Objective Function 3356.9116922 Max Abs Gradient Element
Ridge 0 Actual Over Pred Change

Convergence criterion (ABSGCONV=0.00001) satisfied.

Likelihood Ratio Test for Global Null Hypothesis: BETA=0

-2 Log Likelihood Likelihood
Intercept Intercept & Ratio
Only Covariates Chi-Square DF Pr > ChiSq
6713.823 6713.823 0.0000 0

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.00041 0.0287 0.00 0.9885

Standardized

3
0

5.707879E-12

0

Exp(Est)

1.000
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Step 1 adds one input to the intercept-only model. The input and corresponding parameter are chosen
to produce the largest decrease in the objective function. To estimate the values of the model
parameters, the modeling algorithm makes an initial guess for their values. The initial guess is
combined with the training data measurements in the objective function. Based on statistical theory,
the objective function is assumed to take its minimum value at the correct estimate for the parameters.
The algorithm decides whether changing the values of the initial parameter estimates can decrease the
value of the objective function. If so, the parameter estimates are changed to decrease the value of the
objective function and the process iterates. The algorithm continues iterating until changes in the
parameter estimates fail to substantially decrease the value of the objective function.

Step 1: Effect GiftCnt36 entered.
The DMREG Procedure
Newton-Raphson Ridge Optimization
Without Parameter Scaling

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 3356.9116922
Max Abs Gradient Element 89.678463762
Ratio
Between
Actual
Objective Max Abs and
Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Ridge Change
1 0 2 0 3316 41.4036 2.1746 0 1.014
2 0 3 0 3315 0.0345 0.00690 0 1.002
3 0 4 0 3315 2.278E-7 4.833E-8 0 1.000

Optimization Results

Iterations 3 Function Calls 6
Hessian Calls 4 Active Constraints 0
Objective Function 3315.473573 Max Abs Gradient Element 4.833086E-8
Ridge 0 Actual Over Pred Change 0.999858035

Convergence criterion (GCONV=1E-6) satisfied.

The output next compares the model fit in Step 1 with the model fit in Step 0. The objective functions
of both models are multiplied by 2 and differenced. The difference is assumed to have a chi-squared
distribution with one degree of freedom. The hypothesis that the two models are identical is tested. A
large value for the chi-squared statistic makes this hypothesis unlikely.

The hypothesis test is summarized in the next lines.

Likelihood Ratio Test for Global Null Hypothesis: BETA=0

-2 Log Likelihood Likelihood
Intercept Intercept & Ratio
Only Covariates Chi-Square DF Pr > ChiSq

6713.823 6630.947 82.8762 1 <.0001
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The output summarizes an analysis of the statistical significance of individual model effects. For the
one input model, this is similar to the global significance test above.

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq
GiftCnt36 1 79.4757 <.0001

Finally, an analysis of individual parameter estimates is made. (The standardized estimates and the
odds ratios merit special attention and are discussed in the next section of this chapter.)

Analysis of Maximum Likelihood Estimates

Standard Wald Standardized
Parameter DF Estimate Error Chi-Square Pr > ChiSq Estimate Exp(Est)
Intercept 1 -0.3956 0.0526 56.53 <.0001 0.673
GiftCnt36 1 0.1250 0.0140 79.48 <.0001 0.1474 1.133
Odds Ratio Estimates

Point
Effect Estimate
GiftCnt36 1.133

The standardized estimates present the effect of the input on the log-odds of donation. The values are
standardized to be independent of the input’s unit of measure. This provides a means of ranking the
importance of inputs in the model.

The odds ratio estimates indicate by what factor the odds of donation increase for each unit change in
the associated input. Combined with knowledge of the range of the input, this provides an excellent
way to judge the practical (as opposed to the statistical) importance of an input in the model.

The stepwise selection process continues for eight steps. After the eighth step, neither adding nor
removing inputs from the model significantly changes the model fit statistic. At this point the Output
window provides a summary of the stepwise procedure.

Go to line 850 to view the stepwise summary.

The summary shows the step in which each input was added and the statistical significance of each
input in the final eight-input model.

NOTE: No (additional) effects met the 0.05 significance level for entry into the model.

Summary of Stepwise Selection

Effect Number Score Wald
Step Entered DF In Chi-Square Chi-Square Pr > ChiSq
1 GiftCnt36 1 1 81.6807 <.0001
2 GiftTimelLast 1 2 23.2884 <.0001
3 DemMedHomeValue 1 3 16.9872 <.0001
4 GiftAvgAll 1 4 14.8514 0.0001
5 StatusCat96NK 5 5 18.2293 0.0027
6 DemPctVeterans 1 6 7.4187 0.0065
7 M_GiftAvgCard36 1 7 7.1729 0.0074
8 M_DemAge 1 8 4.6501 0.0311
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The default selection criterion selects the model from Step 8 as the model with optimal complexity.
As the next section shows, this might not be the optimal model, based on the fit statistic that is
appropriate for your analysis objective.

The selected model, based on the CHOOSE=NONE criterion, is the model trained in Step 8. It consists of the following effects:

Intercept DemMedHomeValue DemPctVeterans GiftAvgAll GiftCnt36 GiftTimeLast M DemAge M GiftAvgCard36 StatusCat9eNK

For convenience, the output from Step 8 is repeated. An excerpt from the analysis of individual
parameter estimates is shown below.

Parameter

Intercept

GiftAvgAll
GiftCnt36

M_DemAge

M_GiftAvgCard36
StatusCat96NK
StatusCat96NK
StatusCat96NK
StatusCat96NK
StatusCat96NK

DemMedHomeValue
DemPctVeterans

GiftTimeLast

Zr mm>» O O

Analysis of Maximum Likelihood Estimates

DF Estimate

Standard

Wald

Error Chi-Square

1 0.2727 0.2024
1 1.385E-6 3.009E-7
1 0.00658 0.00261
1 -0.0136 0.00444
1 0.0587 0.0187
1 -0.0376 0.00770
1 0.0741 0.0344
1 0.1112 0.0411
1 -0.0880 0.0927
1 0.4974 0.1818
1 -0.4570 0.1303
1 0.1456 0.3735
1 -0.1206 0.1323

1

21

—_
O O N NOSN B>

.82
.18

6.

9.

9.
23.
.65
.30
.90
.48
.30
.15
.83

38
33
79
90

Pr > ChiSq

OO O0OO0ODO0OO0OO0OANOOOAOo

L1779

0001

.0115

0023

.0018
.0001
.0311
.0069
.3423
.0062

0005

.6966
.3621

Standardized

Estimate

0.0763
0.0412
-0.0608
0.0692
-0.0837

Exp(Est)

1.
1
1
0
1
0
1.
1
0
1
0
1
0

.000
.007
.987
.060
.963

077

.118
.916
.644
.633
.157
.886

The parameter with the largest standardized estimate (in absolute value) is Gi ftTimeLast.

7. Restore the Output window and maximize the Fit Statistics window.

E=] Fit Statistics
Target Fit Statistics | Statistics Train Validation |Test
Lahel
TargetB _AIC_ Akaike's Inf... BAR3.093 ]
TargetB _ASE_ Average 3q... 02409149 0242336
TargetB _AYERR_  Awerage Err.. 0674901 0673517
TargetB _DFE_ Degrees of ... 4830
TargetB _DFM_ mModel Dear... 13
TargetB _DFT_ Total Dedgre... 4843 ,
TargetB D Divisar for A 9EBE 9686
TargetB _ERE_ Errar Functi... Ba3r.0493 Bayva 1z
TargetB _FPE_ Final Predic... 0242216 )
TargetB _MAK_ M aximum A, 0865413 0.5998582
TargetB _MBE_ mMean Squa... 0241567 0242336
TargetB _MOBS_ Sum of Fre... 4843 4843
TargetB WY Mumber of ... 13 ,
TargetB _RASE_ Root Avera... 0.490834 0.492277
TargetB _RFFE_ Root Final ... 0492154 ,
TargetB _RMSE_ Root Mean ... 0.4914495 0492277
TargetB _SBiC_ Schwarz's ... BE47. 402
TargetB _88E_ Sum of Sgu... 233304 234727
TargetB _SLIMY_ Sumof Cas... Q626 9586
TargetB _MISC_ Misclassific... 0421433 0424453

The simpler model improves on both the validation misclassification and average squared error
measures of model performance.
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4.3 Optimizing Regression Complexity

NSRS A O . |
Model Essentials — Regressions

> Optimize complexity. Best mode| }

from sequence
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Regression complexity is optimized by choosing the optimal model in the sequential selection sequence.

SR A . |
Model Fit versus Complexity

Model fit statistic

validation

Evaluate each
sequence step.

training

w1 [eIs [[es s (S s [(SSSEN SSSEEE

1 2 3 4 5 6
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The process involves two steps. First, fit statistics are calculated for the models generated in each step of

the selection process. Both the training and validation data sets are used.
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T O A . |
Select Model with Optimal Validation Fit

Model fit statistic

Choose simplest
optimal model.

mn T ]
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Then, as with the decision tree in Chapter 3, the simplest model (that is, the one with the fewest inputs)
with the optimal fit statistic is selected.
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@ | Optimizing Complexity

Iteration Plot

The following steps illustrate the use of the iteration plot in the Regression tool Results window.

In the same manner as the decision tree, you can tune a regression model to give optimal performance on
the validation data. The basic idea involves calculating a fit statistic for each step in the input selection
procedure and selecting the step (and corresponding model) with the optimal fit statistic value. To avoid
bias, of course, the fit statistic should be calculated on the validation data set.

1. Select View = Model = Iteration Plot. The Iteration Plot window opens.

Iteration Plot

“EF E

| Average Squared Error

-

0.2500 \
024754 W\

\!
0.2450 \

0.2400

0.2425 ~

Model Selection Step Number

Train: Average Sguared Errar
Walid: Average Soquared Error

The Iteration Plot window shows (by default) average squared error (training and validation) from the
model selected in each step of the stepwise selection process.

e Surprisingly, this plot contradicts the naive assumption that a model fit statistic calculated on
training data will always be better than the same statistic calculated on validation data. This
concept, called the optimism principle, is correct only on the average, and usually manifests
itself only when overly complex (overly flexible) models are considered. It is not uncommon
for training and validation fit statistic plots to cross (possibly several times). These crossings
illustrate unquantified variability in the fit statistics.

Apparently, the smallest average squared error occurs in Step 4, rather than in the final model, Step 8.
If your analysis objective requires estimates as predictions, the model from Step 4 should provide

slightly less biased ones.
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2. Select Select Chart = Misclassification Rate.

ieration Plot

Misclassification Rate -

0.500 \

0.425

Model Selection Step Number

Train: Misclassification Rate
Yalid: Misclassification Rate

The iteration plot shows that the model with the smallest misclassification rate occurs in Step 3.
If your analysis objective requires decision predictions, the predictions from the Step 3 model are
as accurate as the predictions from the final Step 8 model.

The selection process stopped at Step 8 to limit the amount of time spent running the stepwise
selection procedure. In Step 8, no more inputs had a chi-squared p-value below 0.05. The value 0.05
is a somewhat arbitrary holdover from the days of statistical tables. With the validation data available
to gauge overfitting, it is possible to eliminate this restriction and obtain a richer pool of models to
consider.
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Full Model Selection

Use the following steps to build and evaluate a larger sequence of regression models:

1.
2.

BIEguatian
“Main Effects

BS

Close the Results - Regression window.

- Two-Factor Interactic

M0

“Polynamial Terms

M0

FPolynamial Dedree

2

User Terms

M0

“Term Editar

“Suppress Intercept

“Input Coding

Model Selection

Selection Model

Stepwise

“Selection Criterion

Default

-lJse Selection Defal

L]

“Selection Options

Select Selection Options = j

Select Use Selection Default = No from the Regression node Properties panel.
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The Selection Options window opens.

£ Selection Options

l
l

-
|
|
|
|
|
|
|
|
|
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4. Type 1.0 as the Entry Significance Level value.

5. Type 0.5 as the Stay Significance Level value.

2 Selection Options

J Fropery | Walue
Seguential Order Mo
Entry Significance Level 1.0
Stay Significance Level na
Start Wariahle Mumber n
Stop Wariahle Mumber ]
Force Candidate Effects n
Hierarchy Effects Class
moving Effect Rule Mone
haximum rHumber of Steps n
Stay Significance Level
significance level for removing variables in bacloaward o stepwise regression.,

Cancel

The Entry Significance value enables any input in the model. (The one chosen will have the smallest
p-value.) The Stay Significance value keeps any input in the model with a p-value less than 0.5. This

second choice is somewhat arbitrary. A smaller value can terminate the stepwise selection process
earlier, while a larger value can maintain it longer. A Stay Significance of 1.0 forces stepwise to

behave in the manner of a forward selection.

6. Run the Regression node and view the results.
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7. Select View = Model = Iteration Plot. The Iteration Plot window opens.

[ < B

iteration Plot

Average Squared Error -

\

0.245 III

0.240

T T T T
0 3 10 15 20

Model Selection Step Number

Train: Average Squared Error
YWalid: Average Squared Error

The iteration plot shows the smallest average squared errors occurring in Steps 4 or 12. There is a
significant change in average squared error in Step 13, when the DemCluster input is added.
Inclusion of this nonnumeric input improves training performance but hurts validation performance.
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8. Select Select Chart = Misclassification Rate.

iteration Plot
Misclassification Rate -
0.500
0475
0450 II
|
II L
0.425 V_ 1
—hh_\____,—_\\/,,—\'__'__q
0.400 <
I I I T I
0 5 10 15 20
Model Selection Step Number
Train: Misclassification Rate
Walid: Misclassification Rate

The iteration plot shows that the smallest validation misclassification rates occur at Step 3. Notice
that the change in the assessment statistic in Step 13 is much less pronounced.

Best Sequence Model

You can configure the Regression node to select the model with the smallest fit statistic (rather than the
final stepwise selection iteration). This method is how SAS Enterprise Miner optimizes complexity for
regression models.

1. Close the Results - Regression window.
2. If your predictions are decisions, use the following setting:

Select Selection Criterion = Validation Misclassification. (Equivalently, you can select
Validation Profit/Loss. The equivalence is demonstrated in Chapter 6.)

3. If your predictions are estimates (or rankings), use the following setting:

Select Selection Criterion = Validation Error.

Blmodel Selection
-Selection Model Stepwise
;*-Selectinn Criterion Malidation Error
Flse Selection DefaLMo

“Celection Options [aad

e The continuing demonstration assumes validation error selection criteria.
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4. Run the Regression node and view the results.

5. Select View = Model = lteration Plot.

lteration Plot

Average Sgquared Error -

0.2435

0.240

T T T
0 3 10

15

Model Selection Step Number

Train: Average Soquared Error
Walid: Average Squared Error

The vertical blue line shows the model with the optimal validation error (Step 12).

6. Goto line 2690.

Parameter DF Estimate
Intercept 1 0.4999
DemMedHomeValue 1 1.416E-6
DemPctVeterans 1 0.00651
GiftAvg36 1 -0.0101
GiftCnt36 1 0.0574
GiftTimelLast 1 -0.0415
M_DemAge 0 1 0.0720
M_GiftAvgCard36 0 1 0.1126
PromCntCardi2 1 -0.0381
StatusCat96NK A 1 -0.0353
StatusCat96NK E 1 0.4010
StatusCat96NK F 1 -0.4485
StatusCat96NK L 1 0.1733
StatusCat96NK N 1 -0.0988
StatusCatStarAll 0 1 -0.0701

Stal

0
3.0
0.
0.
0
0.

O OO OO0 O OoOOo

ndard
Error

.2575
11E-7
00261
00355
.0197
00829
.0345
.0412
.0281
.0957
.1950
.1314
.3743
.1353
.0367

Wald
Chi-Square

3.
22,

6.

8.

8.
.07
.36
.46
.85
.14
.23
.66
.21
.53
.64

n
(4]

-
W OO =+ O =N H

77
12
23
02
53

Analysis of Maximum Likelihood Estimates

Pr > ChiSq

0.0522
<.0001
0.0126
0.0046
0.0035
<.0001
0.0367
0.0063
0.1740
0.7122
0.0398
0.0006
0.6433
0.4649
0.0563

Standardized
Estimate

0.0781
0.0407
-0.0561
0.0677
-0.0923

-0.0282

Exp(Est)

OO0 -~ 0 200 2 40 20O = =4 =

.649
.000
.007
.990
.059
.959
.075
.119
.963
.965
.493
.639
.189
.906
.932
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While not all the p-values are less than 0.05, the model seems to have a better validation average

squared error (and misclassification) than the model selected using the default Significance Level
settings.

In short, there is nothing sacred about 0.05. It is not unreasonable to override the defaults of the
Regression node to enable selection from a richer collection of potential models. On the other hand,
most of the reduction in the fit statistics occurs during inclusion of the first three inputs. If you seek a
parsimonious model, it is reasonable to use a smaller value for the Stay Significance parameter.
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4.4 Interpreting Regression Models

NSRS A O . |
Beyond the Prediction Formula

_» Interpret the model.

66

After you build a model, you might be asked to interpret the results. Fortunately regression models lend
themselves to easy interpretation.
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Odds Ratios and Doubling Amounts

p N N N
log (1_6):W0+W1'X1 + W, X,

Ax; consequence

) . odds change with unit
Doubling amount: change in input.
Input change is required = odds x2

Odds ratio: Amount
to double odds. ]

69

There are two equivalent ways to interpret a logistic regression model. Both relate changes in input

measurements to changes in odds of primary outcome.

o An odds ratio expresses the increase in primary outcome odds associated with a unit change in an
input. It is obtained by exponentiation of the parameter estimate of the input of interest.

o A doubling amount gives the amount of change required for doubling the primary outcome odds. It is

equal to log(2) =~ 0.69 divided by the parameter estimate of the input of interest.

pd If the predicted logit scores remain in the range -2 to +2, linear and logistic regression models of

binary targets are virtually indistinguishable. Balanced stratified sampling (Chapter 6) often

ensures this. Thus, the prevalence of balanced sampling in predictive modeling might, in fact, be

a vestigial practice from a time when maximum likelihood estimation was computationally

extravagant.
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@ | Interpreting a Regression Model

The following steps demonstrate how to interpret a model using odds ratios:

1. Goto line 2712 of the regression model output.

Odds Ratio Estimates

Point
Effect Estimate
DemMedHomeValue 1.000
DemPctVeterans 1.007
GiftAvg36 0.990
GiftCnt36 1.059
GiftTimeLast 0.959
M_DemAge 0 vs 1 1.155
M_GiftAvgCard36 0 vs 1 1.253
PromCntCardi2 0.963
StatusCat96NK A vs S 0.957
StatusCat96NK E vs S 1.481
StatusCat96NK F vs S 0.633
StatusCat96NK L vs S 1.179
StatusCat96NK N vs S 0.898
StatusCatStarAll 0 vs 1 0.869

This output includes most of situations you will encounter when you build a regression model.

For Gi FtAvg36, the odds ratio estimate equals 0.990. This means that for each additional dollar
donated (on average) in the past 36 months, the odds of donation on the 97NK campaign change by a
factor of 0.99, a 1% decrease.

For GiFtCnt36, the odds ratio estimate equals 1.059. This means that for each additional donation
in the past 36 months, the odds of donation on the 97NK campaign change by a factor of 1.059, a
5.9% increase.

For M_DemAge, the odds ratio (0 versus 1) estimate equals 1.155. This means that cases with a 0
value for M_DemAge are 1.155 times more likely to donate than cases with a 1 value for M_DemAge.

yd The unusual value of 1.000 for the DemMedHomeValue odds ratio has a simple explanation.
Unit (that is, single dollar) changes in home value do not change the odds of response by an
amount captured in three significant digits. To obtain a more meaningful value for this input’s
effect on response odds, you can multiply the parameter estimate by 1000 and exponentiate
the result. You then have the change in response odds based on 1000 dollar changes in
median home value. Equivalently, you could use the Transform Variables node to replace
DemMedHomeValue with DemMedHmVal1000=DemMedHomeValue/1000, and a unit
increase on that new input would represent a $1000 increase in the DemMedHomeValue.

2. Close the Results window.



4.5 Transforming Inputs 4-51

4.5 Transforming Inputs

NSRS A O . |
Beyond the Prediction Formula

Handle extreme or unusual values.
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Classical regression analysis makes no assumptions about the distribution of inputs. The only assumption

is that the expected value of the target (or some function thereof) is a linear combination of fixed input
measurements.

Why should you worry about extreme input distributions?
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T AT .
Extreme Distributions and Regressions
Original Input Scale

true association

—

=7~ standard regression

standard regression

- true association
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There are at least two compelling reasons.

o First, in most real-world applications, the relationship between expected target value and input value
does not increase without bound. Rather, it typically tapers off to some horizontal asymptote. Standard
regression models are unable to accommodate such a relationship.

e Second, as a point expands from the overall mean of a distribution, the point has more influence, or
leverage, on model fit. Models built on inputs with extreme distributions attempt to optimize fit for the
most extreme points at the cost of fit for the bulk of the data, usually near the input mean. This can
result in an exaggeration or an understating of an input’s association with the target.

Both of these phenomena are seen in the above slide.

yd The first concern can be addressed by abandoning standard regression models for more flexible
modeling methods. Abandoning standard regression models is often done at the cost of model
interpretability and, more importantly, failure to address the second concern of leverage.
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T O A . |
Extreme Distributions and Regressions

Original Input Scale

true association

;z : standard regression

standard regression

e * o o true association
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Regularized Scale

A simpler and, arguably, more effective approach transforms or regularizes offending inputs in order to

eliminate extreme values.

Original Input Scale

76

Regularizing Input Transformations

Regularized Scale

standard regression

standard regression
[ ]

Then, a standard regression model can be accurately fit using the transformed input in place of the

original input.
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IR T .
Regularizing Input Transformations

Original Input Scale Regularized Scale
_true association standard regression
L 3 i °® 4
” * regularized estimate o
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Often this can solve both problems mentioned above. This not only mitigates the influence of extreme
cases, but also creates the desired asymptotic association between input and target on the original input
scale.
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@ | Transforming Inputs

Regression models are sensitive to extreme or outlying values in the input space. Inputs with highly

skewed or highly kurtotic distributions can be selected over inputs that yield better overall predictions. To

avoid this problem, analysts often regularize the input distributions using a simple transformation. The
benefit of this approach is improved model performance. The cost, of course, is increased difficulty in

model interpretation.

The Transform Variables tool enables you to easily apply standard transformations (in addition to the
specialized ones seen in Chapter 9) to a set of inputs.

The Transform Variables Tool

Use the following steps to transform inputs with the Transform Variables tool:

1. Remove the connection between the Data Partition node and the Impute node.

L. Predictive Analysis

Eﬁ-‘mpm g [-':ékegression g

§ %Probabilil\r Trae
§ 2Decision Tree

Jdata Partition

ﬂ |2 Ge =1 Giws

-

Select the Modify tab.

Drag a Transform Variables tool into the diagram workspace.

Connect the Data Partition node to the Transform Variables node.

a M LN

Connect the Transform Variables node to the Impute node.
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6. Adjust the diagram icons for aesthetics. (So that you can see the entire diagram, the zoom level is
reduced.)

LunPredictive Analysis

.y@;m'“ .|- -bwmm L— "hliwm |

ata Partition L—: —= é gh—mliit'p Tree
- J-é gbu'isim‘rrm

Rl | L||[l§{“}|@ - — @ o

="m

-

The Transform Variables node is placed before the Impute node to keep the imputed values at the
average (or center of mass) of the model inputs.

7. Select the Variables = j property of the Transform Variables node.

Frope Yalue

Mode [D Trans

Irmported Data feed]
Exported Data ||
M otes ]

ariables aed]
Farrmulas [ ]
Interactions eed]
SAS Code |oce|

=

-Interdal Inputs Mone
-Interval Targets Mone
Class Inputs Mone
Class Targets Maone

Sample Propeties
-hlethod First b
"Bize Cefault

Random Seed 12345




4.5 Transforming Inputs 4-57

The Variables - Trans window opens.

& Variables - Trans

(hohe) "| [] not ‘Equaltu "|| || ‘ | m H Reset |
Mame | Method | NumberofBins | Role | Level | Type | Order | Label |
Damage Default 4.0(Input Interal Humeric Ade -
Demcluster  Default 4.0/Input MHaminal Character Demograph
DemGender Default 4.0 |Input rHominal Character Gender
DemHorme OwDefault 4.0/Input Binany Character Hame Own
DemiledHormiDetault 4.0 |Input Interval Humeric Median Ho
DemhdadinconDefault 4.0 Rejected Interal Hlumeric tedian Inco
DemPctveteraDefault 4.0/ Input Interval Mumeric Percent et
Giftun 36 Default 4.0|Inpaut Interal Hlumeric Gift Amount
GiftAvgAll Default 4.0/Input Interval Mumeric Gift Amount
Gifttwg Card 36 Default 4.0(Input Interal Humeric Gift Amount
GitAvglast  Default 4.0/Input Interval Humeric Gift Amount
GiftCnt3g Default 4.0 |Input Interval Humeric Gift Count 3
GiftCntAll Default 4.0/Input Interval Humetric Gift Count Al
Gt ntC ard 36 Default 4.0 |Input Interval Humeric Gift Count C
GitChtC ardAll Default 4.0/Input Interval Humetric Gift Count C
GiftTimeFirst Default 4.0/ Input Interval Mumeric Times Sinc
GiftTimelLast Default 4.0|Inpaut Interal Hlumeric Time Since
PromCnt12  Default 4.0/Input Interval Mumeric Promotion
PromCnti6  Default 4.0|Inpaut Interal Hlumeric Promation
PromChtall  Default 4.0/Input Interval Humeric Pramotion
Fromcntcard Default 4.0 |Input Interval Humeric Promaotion
PramChtCard Default 4.0/Input Interval Humeric Pramotian
Fromcntcard/Detault 4.0 |Input Interval Humeric Promaotion
REF_DemiedDefault 4.0/Input Interval Humetric Replaceme
StatusCat9s M Default 4.0/ Input MHaominal Character Status Cate
StatusCatStarDefrault 4.0|Inpaut Binary Hlumeric Status Categ
1 [+
Explore... ‘ | Update Path | ‘ OK ‘ ‘ Cancel ‘




4-58

Chapter 4 Introduction to Predictive Modeling: Regressions

8. Select all inputs with Gi ft in the name.

& Variables - Trans

‘[nonej "| [] not ‘Equaltu "|| || ‘ | Apply H Reset |
Name | Method | NumberofBins | Role | Level | Type | order | Label

Damage Default 4.0(Input Interal Humeric Ade -
Demcluster  Default 4.0/Input MHaminal Character Demograph
DemGender Default 4.0 |Input rHominal Character Gender
DemHorme OwDefault 4.0/Input Binany Character Hame Own
DemiledHormiDetault 4.0 |Input Interval Humeric Median Ho
DemhdadinconDefault 4.0 Rejected Interal Hlumeric tedian Inco
DemPctyeteraDefault 4.0 Input Interval Mumeric Percent Vet

efault 4.0

efault 4.0

efault 4.0

efault 4.0

efault 1.0

efault 4.0

efault 1.0

efault 4.0

efault 4.0

efault 4.0
PromCnt12  Default 4.0/Input Interval Mumeric Promotion
PromCnti6  Default 4.0|Inpaut Interal Hlumeric Promation
PromChtall  Default 4.0/Input Interval Humeric Pramotion
Fromcntcard Default 4.0 |Input Interval Humeric Promaotion
PramChtCard Default 4.0/Input Interval Humeric Pramotian
Fromcntcard/Detault 4.0 |Input Interval Humeric Promaotion
REF_DemiedDefault 4.0/Input Interval Humetric Replaceme
StatusCat9s M Default 4.0/ Input MHaominal Character Status Cate
StatusCatStarDefrault 4.0|Inpaut Binary Hlumeric Status Categ

1

]

Explore... H Update Path || OK ” Cancel ‘
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9. Select Explore.... The Explore window opens.

Explore= EMWSIPant_ TRAIN

File Yiew Actions Wihdow

lul GiftAvgCard36

T

$1.33 §$104.80 $208.27
Gift Amount Average Card ...

£} sample Properties :

J\ Property |
Rows !4843

00 18 36 54 72 90
Gift Count Card 36 Months

EMWS.Part_TRAIN Ll GifthvgLast *

Obs# | _DATAOBS_| Target Gif § 4000
2000
D_

$0.00 $100.00 $200.00 00 58 116 17.4 232 290
Gift Amount Last Gift Count Card All Months

Bl GiftCnt36

£ 1500
1000
500
0

$000 $10400 $208.00 D0 30 G0 90 120 150 150 795 1440 2085
Gift Amount Average 36 M... Gift Count 36 Months Time Since First Gift

$1.50 FB0S0 F160.30 40 BEF 132 178 224 270
Gift Amount Average All M... Gift Count All Months Time Since Last Gift

The GiFtAvg and Gi ftCnt inputs show some degree of skew in their distribution. The
GiTtTime inputs do not. To regularize the skewed distributions, use the log transformation. For
these inputs, the order of magnitude of the underlying measure predicts the target rather than the
measure itself.

10. Close the Explore window.



4-60 Chapter 4 Introduction to Predictive Modeling: Regressions

11. Deselect the two inputs with GIFETime in their names.

£ Variables - Trans

{none] "| [] not ‘Equaltu "|| || ‘ | Apply H Reset |
Mame | Method | NumberofBins | Role | Level | Type | Order | Label |

Damage Default 4.0(Input Interal Humeric Ade -
Demcluster  Default 4.0/Input MHaminal Character Demograph
DemGender Default 4.0 |Input rHominal Character Gender
DemHorme OwDefault 4.0/Input Binany Character Hame Own
DemiledHormiDetault 4.0 |Input Interval Humeric Median Ho
DemhdadinconDefault 4.0 Rejected Interal Hlumeric tedian Inco
DemPctyeteraDefault 4.0 Input Interval Mumeric Percent Vet

efault 4.0

efault 4.0

efault 4.0

efault 4.0

efault 1.0

efault 4.0

efault 1.0

efault 4.0
GiftTimeFirst Default 4.0/ Input Interval Mumeric Times Sinc
GiftTimelLast Default 4.0|Inpaut Interal Hlumeric Time Since
PromCnt12  Default 4.0/Input Interval Mumeric Promotion
PromCnti6  Default 4.0|Inpaut Interal Hlumeric Promation
PromChtall  Default 4.0/Input Interval Humeric Pramotion
Fromcntcard Default 4.0 |Input Interval Humeric Promaotion
PramChtCard Default 4.0/Input Interval Humeric Pramotian
Fromcntcard/Detault 4.0 |Input Interval Humeric Promaotion
REF_DemiedDefault 4.0/Input Interval Humetric Replaceme
StatusCat9s M Default 4.0/ Input MHaominal Character Status Cate
StatusCatStarDefrault 4.0|Inpaut Binary Hlumeric Status Categ

1 [+

Explore... H Update Path || OK ” Cancel ‘
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12. Select Method = Log for one of the remaining selected inputs. The selected method changes from
Default to Log for the Gi FtAvg and Gi ftCnt inputs.

£ Variables - Trans

(hone) v| [ rot |Equalt0 v|| || | | Aggaly || Reset |
Name | Method | MNumberofBins | Role | level | Type | Order | Label |
DemAge Default 4.0/ Input Interval Mumeric Ane —
DemCluster Default 4.0/ Input MHominal Character Demograph
DemGender Default 4.0/ Input MHominal Character Gender
DemHomeOwDefault 4.0/ Input Binary Character Home Owwn
DemhledHomiDefault 4.0/ Input Interval Mumeric Median Ho
DemhledinconDefault 1.0 Fejected Interval Mumeric mMedian Inco
CemPctyeteraDefault 4.0/Input Interval Mumeric Fercent Vet
{1} ] 1.0
{1} ] 1.0
{1} ] 1.0
{1} ] 1.0
{1} ] 1.0
{1} ] 1.0
{1} ] 1.0
{1} ] 1.0
GifiTimeFirst Default 4.0/ Input Interval Mumeric Times Sinc
GifiTimeLast Default 4.0/ Input Interval Mumeric Time Since
PromCnt12  Default 4.0/ Input Interval Mumeric Promuotion
PromCntié  Default 4.0/ Input Interval Mumeric Promuotion
PromCntal  Default 4.0/ Input Interval Mumeric Promuotion
PromCntCard Default 4.0/ Input Interval Mumeric Promuotion
FPromCntCard Default 4.0/ Input Interval Mumeric Promuotion
PromCntCardDefault 4.0/ Input Interval Mumeric Promuotion
REF_DemieDefault 4.0/ Input Interval Mumeric Replaceme
Status Cat96n IDefault 4.0/ Input MHominal Character Status Cate
Status CatStarDefault 4.0Input Binary Mumeric Status Categw
1 [»]
| Explore.. || updaterath || ok || cancel |

13. Select OK to close the Variables - Trans window.
14. Run the Transform Variables node and view the results.

15. Maximize the Output window and go to line 28.

Input
Input Name Role Level Name Level Formula
GiftAvg36 INPUT  INTERVAL  LOG_GiftAvg36 INTERVAL log(GiftAvg36 + 1)
GiftAvgAll INPUT  INTERVAL  LOG_GiftAvgAll INTERVAL log (GiftAvgAll + 1)
GiftAvgCard36 INPUT INTERVAL LOG_GiftAvgCard36 INTERVAL log(GiftAvgCard36 + 1)
GiftAvglLast INPUT INTERVAL LOG_GiftAvgLast INTERVAL log(GiftAvgLast + 1)
GiftCnt36 INPUT INTERVAL LOG_GiftCnt36 INTERVAL log(GiftCnt36 + 1)
GiftCntAll INPUT  INTERVAL  LOG_GiftCntAll INTERVAL log(GiftCntAll + 1)
GiftCntCard36 INPUT  INTERVAL LOG_GiftCntCard36 INTERVAL log(GiftCntCard36 + 1)
GiftCntCardAll  INPUT  INTERVAL LOG_GiftCntCardAll  INTERVAL log(GiftCntCardAll + 1)

Notice the Formula column. While a log transformation was specified, the actual transformation used
was log(input + 1). This default action of the Transform Variables tool avoids problems with 0-values
of the underlying inputs.

16. Close the Transform Variables - Results window.
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Regressions with Transformed Inputs

The following steps revisit regression, and use the transformed inputs:

1. Run the diagram from the Regression node and view the results.

2. Go to line 3754 the Output window.

Step

0o NOOO P~ OND =

DN = — 4 a4 a4 a4 a4
- O WO NOOOUPN~AWN-—=OO©

Effect

Entered

LOG_GiftCnt36
GiftTimeLast
DemMedHomeValue
LOG_GiftAvgAll
DemPctVeterans
StatusCat96NK
LOG_GiftCntCard36
M_DemAge
DemCluster
StatusCatStarAll
PromCntCardi2
PromCntAll
LOG_GiftCntAll
PromCnt12
PromCntCardAll

M_REP_DemMedIncome
LOG_GiftAvg36
M_LOG_GiftAvgCard36
GiftTimeFirst

Summary of Stepwise Selection

Removed

PromCntCardi2

GiftTimeFirst

o
B

- a4 0l = = A A

)]
w

_ 4 a4 4 a4 d d a d A

Number
In

0N O~ OO =

95.
.1330
17.
.7306

7.
13.
.9966
5.
.2167
.2431
.4604
.0022
.2990
.8158
.8875

21

21

5

61

-~ O N = = 4

O O O o

Intercept DemMedHomeValue GiftTimeLast LOG GiftAvgAll LOG GiftCnt36

Score
Chi-Square

0275

7373

0742
7906

0301

.6075
.4691
.6226
.3972

Wald
Chi-Square

0.0358

0.3971

Pr > ChiSq

O OO0 0O 000000000000 OAAANNA

.0001
.0001
.0001
.0001
.0078
.0170

0143

.0249
.2049
.2649
.2269
.3168
.1295

3664

.1695

8500

.4357
.4934
.4301
.5285
.5286

The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 4. It consists of
the following effects:

The stepwise selection process took 21 steps, and the selected model came from step 4. Notice that
half of the selected inputs are log transformations of the original gift variables.
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Go to line 3800 to view more statistics from the selected model.

Analysis of Maximum Likelihood Estimates

Standard Wald Standardized
Parameter DF Estimate Error Chi-Square Pr > ChiSq Estimate Exp(Est)
Intercept 1 0.8251 0.2921 7.98 0.0047 2.282
DemMedHomeValue 1 1.448E-6 3.002E-7 23.26 <.0001 0.0798 1.000
GiftTimeLast 1 -0.0341 0.00756 20.33 <.0001 -0.0758 0.966
LOG_GiftAvgAll 1 -0.3469 0.0747 21.58 <.0001 -0.0895 0.707
LOG_GiftCnt36 1 0.3736 0.0728 26.34 <.0001 0.0998 1.453

Odds Ratio Estimates

Point
Effect Estimate
DemMedHomeValue 1.000
GiftTimeLast 0.966
LOG_GiftAvgAll 0.707
LOG_GiftCnt36 1.453

Select View = Model = lteration Plot.

ieration Plot
Average Squared Error -
0.250
0.245 -
/ T T
-
0.240 -
0.235 -
| | | | I
0 5 10 15 20
Model Selection Step Number
Train: Average Squared Error
Walid: Average Squared Error

The selected model (based on minimum error) occurs in Step 4. The value of average squared error
for this model is slightly lower than that for the model with the untransformed inputs.
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5. Select Select Chart = Misclassification Rate.

lteration Plot

Misclassification Rate -

0.500

0.425 - |

0.400

0 a 10 15 20
Model Selection Step Number

Train: Misclassification Rate
Walid: Misclassification Rate

The misclassification rate with the transformed input model is nearly the same as that for the
untransformed input model. The model with the lowest misclassification rate comes from Step 3.

If you want to optimize on the misclassification rate, you must change this property in the Regression
node’s property sheet.

6. Close the Results window.
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4.6 Categorical Inputs

NSRS A O . |
Beyond the Prediction Formula

_» Use nonnumeric inputs.

81

Using nonnumeric or categorical inputs presents another problem for regressions. As was seen in the
earlier demonstrations, inclusion of a categorical input with excessive levels can lead to overfitting.

T O AT .
Nonnumeric Input Coding

Level D, Dy D Dy D D Dg Dy D
A 1 0 0 0 0 0 0 0 0
B 0o 1 0 0 0 0 0 0 0
C 0o 0 1 0 0 0 0 0 0
D 0o 0 0 1 0 0 0 0 0
E o 0 0 0 1 0 0 0 0
F o 0 0 0 0 1 0 0 0
G 0o 0 0 0 0 0 1 0 0
4 o 0 0 0 0 0 0 1 0
| 0 0 0 0 0 oF SRR

83
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R AT .
Coding Redundancy

>
o
o
o
o
o
o

— I O MmO w
O 0O 0O 0O OO0 O O -
O O O O O O O k-
O O O O O O KL o
O O 0O O O Fr oo
O O 0O O Fr O o o
O O O kFr OO o o
O O OO0 O oo o
Ok OO0 OO o o

84

To represent these nonnumeric inputs in a model, you must convert them to some sort of numeric values.
This conversion is most commonly done by creating design variables (or dummy variables), with each
design variable representing approximately one level of the categorical input. (The total number of design
variables required is, in fact, one less than the number of inputs.) A single categorical input can vastly
increase a model’s degrees of freedom, which, in turn, increases the chances of a model overfitting.

SR A . |
Coding Consolidation

Level D, Dy D D, D D Dg Dy
A 1 0 0 0 0 0 0 O
B 0o 1 0 0 0 0 0 0
C 0o 0 1 0 0 0 0 O
D 0 0 0 1 0 0 0 0
E 0 0 0 0 1 0 0 0
F 0o 0 0 0 0 1 0 0
G 0o 0 0 0 0 0 1 0
H o 0 0 0 0 0 0 1
| 0 0 0 0 0 0 0 0

85
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86

Coding Consolidation

Level Dagcp Der Dok

A 1 0 0
B 1 0 0
C 1 0 0
D 1 0 0
E 0 1 0
B 0 1 0
G 0 0 1
H 0 0 1

I 0 0 0

There are many remedies to this problem. One of the simplest remedies is to use domain knowledge to
reduce the number of levels of the categorical input. In this way, level-groups are encoded in the model in
place of the original levels.
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@ Recoding Categorical Inputs

In Chapter 2, you used the Replacement tool to eliminate an inappropriate value in the median income
input. This demonstration shows how to use the Replacement tool to facilitate combining input levels of a
categorical input.

1. Remove the connection between the Transform Variables node and the Impute node.

L. Predictive Analysis

>~ @;‘::‘;&"‘ ! I:I?F}mm ;‘; - |_';Reges'|m

Es2ah s partiion | = > Probability Tree

v.n;rr« - »—Er\;pepuoemm = =k
Q = o

]

L &Iﬁeﬁs}on‘rre&

-

R | 2E0je —f— @ ox|zes]
2. Select the Modify tab.
3. Drag a Replacement tool into the diagram workspace.
4. Connect the Transform Variables node to the Replacement node.
5. Connect the Replacement node to the Impute node.
iwu Predictive Analysis = =] B3
}mm” a- ,.:l_“:;hmm | ,.Izl;ﬁmm 3— }L_negmm

Duata Partition | s Probability T nee

L Dedision Tree

=l
4 | ME0|e —1— o ex/zea)
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You need to change some of the node’s default settings so that the replacements are limited to a single
categorical input.

In the Interval Variables property group, select Default Limits Method = None.

Frope Yalue

Mode 1D Repl?

Imported Data |
Exported Data |
Motes aae]

=

-Replacerment Editor |
Default Limits MethaMane [ ]
Cutaff Walues [
Class Yaria

-Replacement Editor |
-Lnknown Levels lgnore

In the Class Variables property group, select Replacement Editor = j from the Replacement node
Properties panel.

Frope Walue
Made D Repl2
Impored Data |
Exported Dats ]
MNotes and]
=
‘Replacement Editor |

Default Limits MethoMone
Cutoff Yalues
Class Variahles

Replacement Editar
‘Lnknown Levels lgnare
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The Replacement Editor opens.

£ Replacement Editor X

| Variable | Level | Freguency |  Type | CharRawv..|Num RawV..| Replacerme..
=

J

The categorical input Replacement Editor lists all levels of each binary, ordinal, and nominal input.
You can use the Replacement column to reassign values to any of the levels.

The input with the largest number of levels is DemCluster, which has so many levels that
consolidating the levels using the Replacement Editor would be an arduous task. (Another,
autonomous method for consolidating the levels of DemCluster is presented as a special topic in
Chapter 8.)

For this demonstration, you combine the levels of another input, StatusCat96NK.
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8. Scroll the Replacement Editor to view the levels of StatusCat96NK.

+ Replacement Editor X

_ Variable | Level | Freguency |  Type |Char Rawv..|Num Raw . |Replaceme.
=

_DEFAULT_

_DEFAULT_

_DEFAULT_

_DEFAULT_

_DEFAULT_ |+

i

The input has six levels, plus a level to represent unknown values (which do not occur in the training
data). The levels of StatusCat96NK will be consolidated as follows:

e Levels Aand S (active and star donors) indicate consistent donors and are grouped into a single
level, A.

o Levels Fand N (first-time and new donors) indicate new donors and are grouped into a single
level, N.

o Levels E and L (inactive and lapsing donors) indicate lapsing donors and are grouped into a single
level L.
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9. Type A as the Replacement level for StatusCat96NK levels Aand S.
10. Type N as the Replacement level for StatusCat96NK levels F and N.

11. Type L as the Replacement level for StatusCat96NK levels L and E.

StatusCataaM A 2911 C A A
StatusCatdeMls |5 1168 C = A
StatusCat96ME. F 342 C F M
StatusCataark. N 286 c M M
StatusCatdaNK.  |E 115 c E L
StatusCat9aMKE. L 21 C L |
StatusCatdarle | LINENOW. | C _DEFAULT_

12. Select OK to close the Replacement Editor.
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13. Run the Replacement node and view the results.

5 Results - Node: Replacement (2) Diagram: Predictive Analysis

File Edit View Window

[ENERNERRET

EZ] Total Replacement Counts

variable  |Role [ Label Train Validation
StatusCatd.. INPUT Status Cate.. 1625 1627

Dodotech
17MAYOS

Variable Summary

Measurenent Frequency
Lewel Count

The Total Replacement Counts window shows the number of replacements that occur in the training
and validation data.
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14. Select View = Model = Replaced Levels. The Replaced Levels window opens.

-] Replaced Levels -

Yariahle Formatted | Type Character FUmeric Feplacemen|Yariable
Walue Linformated |Yalue twalue Lahel
Walue
StatusCatd.. A C A A Status Cate...
StatusCatd.. 5 c 5 A Status Cate..
StatusCatd... F C F o Status Cate...
StatusCatd... M [ ] g Status Cate...
StatusCatd... E C E L Status Cate...
StatusCatd... L C L L Status Cate...

The replaced level values are consistent with expectations.

15. Close the Results window.

16. Run the Regression node and view the results.

17. Go to line 3659 of the Output window.

Step

0N O WND =

Summary of Stepwise Selection

Effect Number Score
Entered Removed DF In Chi-Square
LOG GiftCnt36 1 1 95.0275
GiftTimeLast 1 2 21.1330
DemMedHomeValue 1 3 17.7373
LOG GiftAvgAll 1 4 21.7306
DemPctVeterans 1 5 7.0742
REP_StatusCat96NK 2 6 9.7073
LOG_GiftCntCard36 1 7 6.2112
M_DemAge 1 8 4.8754
DemCluster 53 9 61.7834
StatusCatStarAll 1 10 1.6743
PromCntCardi12 1 11 1.3961
PromCntAll 1 12 1.1442
LOG_GiftCntAll 1 13 1.8685
PromCnt12 1 14 0.6761
PromCntCardAll 1 15 2.0585

PromCntCardi12 1 14
LOG GiftAvg36 1 15 0.7608
M_LOG_GiftAvgCard36 1 16 0.7343
M_REP_DemMedIncome 1 17 0.5853
GiftTimeFirst 1 18 0.3821
GiftTimeFirst 1 17

Wald
Chi-Square

0.0216

0.3821

Pr > ChiSq

<.0001
<.0001
<.0001
<.0001
0.0078
0.0078
0.0127
0.0272
0.1910
0.1957
0.2374
0.2848
0.1717
0.4109
0.1514
0.8830
0.3831
0.3915
0.4443
0.5365
0.5365

The REP_StatusCat96NK input (created from the original StatusCat96NK input) is included
in Step 6 the Stepwise Selection process. The three-level input is represented by two degrees of

freedom.

18. Close the Results window.
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4.7 Polynomial Regressions (Self-Study)

NSRS A O . |
Beyond the Prediction Formula

_» Account for nonlinearities.

20

The Regression tool assumes (by default) a linear and additive association between the inputs and the
logit of the target. If the true association is more complicated, such an assumption might result in biased
predictions. For decisions and rankings, this bias can (in some cases) be unimportant. For estimates, this
bias appears as a higher value for the validation average squared error fit statistic.

NSRS A O . |
Standard Logistic Regression

Iog(l%)zv“voﬂ?lelﬂ?vzxz

91

In the dot color problem, the (standard logistic regression) assumption that the concentration of yellow
dots increases toward the upper right corner of the unit square seems to be suspect.
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T O A . |
Polynomial Logistic Regression

log h) = Wy + Wy X, + Wy X,
+ Wy X2+ W, X

+ W5 X1 Xp

92

When minimizing prediction bias is important, you can increase the flexibility of a regression model by
adding polynomial combinations of the model inputs. This enables predictions to better match the true
input/target association. It also increases the chances of overfitting while simultaneously reducing the
interpretability of the predictions. Therefore, polynomial regression must be approached with some care.

In SAS Enterprise Miner, adding polynomial terms can be done selectively or autonomously.
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@ | Adding Polynomial Regression Terms Selectively

This demonstration shows how to use the Term Editor window to selectively add polynomial regression
terms.

You can modify the existing Regression node or add a new Regression node. If you add a new node, you
must configure the Polynomial Regression node to perform the same tasks as the original. An alternative
is to make a copy of the existing node.

1.
2.

Right-click the Regression node and select Copy from the menu.

Right-click the diagram workspace and select Paste from the menu. A new Regression node is added
with the label Regression (2) to distinguish it from the existing one.

Select the Regression (2) node. The properties are identical to the existing node.

Rename the new regression node Polynomial Regression (2). The (2) is retained to help
with model identification in later chapters.

Connect the Polynomial Regression (2) node to the Impute node.

iws Predictive Analysis

(e o [FRa ) S @ e

\.M?m o E\mhem o

E';Hmh.ﬁnu Tree
]

&D&ds’n‘me G

=l
I | MEEE =1— & 7=z

To add polynomial terms to the model, you use the Term Editor. To use the Term Editor, you need to
enable User Terms.



4-78 Chapter 4 Introduction to Predictive Modeling: Regressions

6. Select User Terms = Yes in the Polynomial Regression (2) property panel.

Frope Yalue
Mode 1D Feg:
Imported Data |oce|
Exported Data |oce|
Motes aed]
ariahbles aed]
E]
hain Effects =}
[ Two-Factor Interacticho
JPolynomial Terms Mo
‘Polynomial Degree |2
ser Terms g5 i
-Terrn Editor |jJ

The Term Editor is now unlocked and can be used to add specific polynomial terms to the regression
model.

3. Select Term Editor = j from the Polynomial Regression Properties panel.

Praope Yalle

Mode D RegZ
Imported Data
Exported Data
Motes

ariables

B

-ain Effects (=33
- Two-Factor Interacticto
JPolynomial Terms Mo
‘Polynomial Degree |2
User Terms as
-Term Editor DJ_
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The Terms window opens.

E. Terms

fwee |

DemCluster
DemGender
DemHomeOwne
DemMedHomeV's
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Interaction Terms

Suppose that you suspect an interaction between home value and time since last gift. (Perhaps a recent
change in property values affected the donation patterns.)

1. Select DemMedHomeValue in the Variables panel of the Terms dialog box.

2. Select the Add button,| ~ | The DemMedHomeValue input is added to the Term panel.

E':. Terms 1
Target: | TargetB -
1|
&+
¥+
X
~Mariables ~Term
DemCluster - DemMedHomeYalue
DemGender
DemHomeOwne 4
DemMedHomeY:
DemPctWeterans _ S
&z 1
OK Cancel
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3. Repeat the previous step to add Gi FtTimeLast.

Target: | TargetB -
1|
4+
+
<
~Mariahles ~Term
Gift TimeFirst - DemMedHomeValue
GiftTimeLast GiftTimeLast
IMP_DemAge <
IMP_LOG_Gifth
IMP_REP_DemM{— S
K D
oK Cancel

4. Select Save. An interaction between the selected inputs is now available for consideration by the
Regression node.

Target: | TargetB -

1 DemiedHomevalue*GifiTimelLast
2

*«

~Wariahles ~Term

GiftTimeFirst -
GiftTimeL ast

IMP_DemAge <
IMP_LOG_Gifti
IMP_REP_DemM{_ B

e

OK Cancel
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Quadratic Terms

Similarly, suppose that you suspect a parabola-shaped relationship between the logit of donation
probability and median home value.

1. Select DemMedHomeValue.

2. Select the Add button,| ~ | The DemMedHomeValue input is added to the Term panel.

3. Select| =~ |again. Another DemMedHomeValue input is added to the Term panel.

7 el
L,. Terms ]

Target: | TargetB hd |

1 DemmedHomeYalue*GifiTimeLast
2

el

Nariables ~Term

DemMedHomeVe ~
DemPcteteran:

DemMedHomevalue
GiftTimeFirst II'
_ Save |

DemMedHomeValue

GiftTimelLast
IMP_Demdage

[

-

| OK || Cancel ‘

4. Select Save. A quadratic median home value term is available for consideration by the model.

E':. Terms 1
Target: | TargetB - |
1 DemmedHomevalue*GifiTimeLast
2 DemmedHomevalue*DemMedHomevalue 'T|
3 |

N

“Variables ~Term—————

DemMedHomevs =~ [~
DemPcteteran

GiftTimeFirst IIl
GiftTimeLast

IMP_DemAige

[

-

| OK | | Cancel
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5. Select OK to close the Terms dialog box.
6. Run the Polynomial Regression node and view the results.
7. Go to line 3752 in the Output window.
Summary of Stepwise Selection
Effect Number Score Wald
Step  Entered Removed DF In Chi-Square  Chi-Square  Pr > ChiSq
1 LOG GiftCnt36 1 1 %.0275 <.0001
2 GiftTimeLast 1 2 21.1330 <.0001
3 DenMecHomeValue*GiftTimeLast 1 3 19.6032 <.0001
4 LOG GiftAvgAll 1 4 21.8432 <.0001
5  DemPctVeterans 1 5 7.0065 0.0077
6  REP_StatusCatoe\K 2 6 9.7708 0.0076
7 LOG GiftOntCard36 1 7 6.2012 0.0128
8 M Demige 1 8 4.9143 0.0266
9  DenecHomeValue*DenilecHomeValue 1 9 3.6530 0.0560
10  StatusCatStarAll 1 10 1.8153 0.1779
11 PronCntCardi2 1 1 1.2570 0.262
12 PronCntALL 1 12 1.3799 0.2401
13 StatusCatStarALL 1 1 0.4504 0.5021
14 DemCluster 53 12 58.7308 0.2736
15 LOG GiftOntAll 1 13 1.0639 0.3046
16 StatusCatStarAll 1 14 1.2548 0.262%6
17 PromCnti12 1 15 0.6591 0.4169
18 PromCntCardAll 1 16 2.0806 0.1492
19 PromCntCardi2 1 15 0.0180 0.8931
20  LOG GiftAvges 1 16 0.7426 0.3838
21 M _REP_DeniiedIncome 1 17 0.6424 0.4228
2 MLOG GiftAvgCard36 1 18 0.6013 0.4381
23 GiftTimeFirst 1 19 0.3946 0.5299
24 GiftTimeFirst 1 18 0.3945 0.529

The stepwise selection summary shows the interaction term added in Step 3 and the quadratic term in

Step 9.

8. Close the Results window.

This raises the obvious question: How do you know which nonlinear terms to include in a model?
Unfortunately, there is no simple solution to this question in SAS Enterprise Miner, other than including

all polynomial and interaction terms in the selection process.
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E:_ @ ) Adding Polynomial Regression Terms Autonomously
- (Self-Study)

SAS Enterprise Miner has the ability to add every polynomial combination of inputs to a regression
model. Obviously, this feature must be used with some care, because the number of polynomial input
combinations increases rapidly with input count.

For instance, the PYA97NK data set has 20 interval inputs. If you want to consider every quadratic
combination of these 20 inputs, your selection procedure must sequentially plod through more than 200
inputs. This is not an overwhelming task for today’s fast computers.

Follow these steps to explore a full two-factor stepwise selection process:

1. Select Two-Factor Interaction = Yes in the Polynomial Regression property panel.

2. Select Polynomial Terms = Yes in the Polynomial Regression Properties panel.

Frope Yalue
Mode D RegZ
Irmported Data feed]
Exported Data aed]
M otes ]
ariahles |oce|
=
-ain Effects (=33
-Two-Factor Interactigves I
-Palynormial Terms  Yes L]
‘Polynomial Degree |2
User Terms as
-Term Editar ]

3. Run the Polynomial Regression (2) node and view the results. (In general, this might take longer than
most activities.)
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4. Goto line 1774 of the Output window.

Summary of Stepwise Selection
Effect Number Score Wald

Step Entered Removed DF In Chi-Square Chi-Square Pr > ChiSq
1 LOG GiftCnt36*LOG GiftCntCardAll 1 1 101.0902 <.0001

2 GiftTimeLast*L0G GiftAvglLast 1 2 33.9163 <.0001

3 DemMedHomeValue*DemPctVeterans 1 3 25.2441 <.0001

4  REP_StatusCat9eNK 2 4 10.2804 0.0059

5  DemHomeOwner*M LOG GiftAvgCard36 1 5 5.8659 0.0154

6 DemCluster*DemGender 106 6 134.9632 0.0302

7 GiftTimeLast*PromCnti2 1 7 5.6507 0.0174

8  LOG GiftCntCard36*PromCnt12 1 8 3.7134 0.0540

9  LOG GiftAvgAll 1 9 5.8202 0.0158

10 DemCluster 50 10 64.6125 0.0801
11 DenCluster 53 9 39.8737 0.9086
e Surprisingly, the selection process takes only 11 steps. This is the result of the 106 degree-of-

freedom DemCluster and DemGender interaction in Step 6. As the iteration plot shows
below, the model is hopelessly overfit after this step. Inputs with many levels are problematic
for predictive models. It is a good practice to reduce the impact of these inputs either by
consolidating the levels or by simply excluding them from the analysis.

5. Scroll down in the Output Window.

The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 3. It
consists of the following effects:

Intercept DemMedHomeValue*DemPctVeterans GiftTimelLast*LOG_GiftAvgLast LOG_GiftCnt36*LOG_GiftCntCardAll

The selected model includes only three terms!
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6. Select View = Model = lteration Plot.

iteration Plot

Average Squared Error -

\ S
k)
0.245 /

0.240 - =
0235 - —
0230 4 \/
I I I I T
00 25 50 Vi 100

Model Selection Step Number

Train: Average Squared Error
YWalid: Average Squared Error

The validation average squared error of the three-term model is lower than any other model
considered to this point.
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)

Exercises

1. Predictive Modeling Using Regression

a. Return to the Chapter 3 Organics diagram. Attach the StatExplore tool to the ORGANICS data
source and run it.

b. In preparation for regression, is any missing values imputation needed?

If yes, should you do this imputation before generating the decision tree models?

Why or why not?

c. Add an Impute node to the diagram and connect it to the Data Partition node. Set the node to
impute U for unknown class variable values and the overall mean for unknown interval variable
values. Create imputation indicators for all imputed inputs.

d. Add a Regression node to the diagram and connect it to the Impute node.
e. Choose the stepwise selection and validation error as the selection criterion.
f. Run the Regression node and view the results.

Which variables are included in the final model?

Which variables are important in this model?

What is the validation ASE?

g. In preparation for regression, are any transformations of the data warranted?

Why or why not?

h. Disconnect the Impute node from the Data Partition node.

i. Add a Transform Variables node to the diagram and connect it to the Data Partition node.

j. Connect the Transform Variables node to the Impute node.

k. Apply a log transformation to the DemAFFfI and PromT ime inputs.

I. Run the Transform Variables node. Explore the exported training data. Did the transformations
result in less skewed distributions?

m. Rerun the Regression node.

Do the selected variables change?

How about the validation ASE?

n. Create a full second-degree polynomial model. How does the validation average squared error for
the polynomial model compare to the original model?
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4.8 Chapter Summary

Regression models are a prolific and useful way to create predictions. New cases are scored using a
prediction formula. Inputs are selected via a sequential selection process. Model complexity is controlled
by fit statistics calculated on validation data.

To use regression models, there are several issues with which to contend that go beyond the predictive
modeling essentials.

1. A mechanism for handling missing input values must be included in the model development process.
A reliable way to interpret the results is needed.
Methods for handling extreme or outlying predictions should be included.

The level-count of a categorical should be reduced to avoid overfitting.

A

The model complexity might need to be increased beyond what is provided by standard regression
methods.

One approach to this is polynomial regression. Polynomial regression models can be fit manually with
specific interactions in mind. They can also be fit autonomously by selecting polynomial terms from a list
of all polynomial candidates.
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96

Regression Tools Review

Replace missing values for interval (means)
and categorical data (mode). Create a
unique replacement indicator.

-, Create linear and logistic regression

models. Select inputs with a sequential
selection method and appropriate fit
statistic. Interpret models with odds ratios.

Regularize distributions of inputs. Typical
transformations control for input skewness
via a log transformation.

continued...

97

Regression Tools Review

X EaReplacement

—_—————
o Folynomial
/ Regression

Consolidate levels of a nonnumeric input
using the Replacement Editor window.

| Add polynomial terms to a regression either
by hand or by an autonomous exhaustive
| search.
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4.9 Solutions

Solutions to Exercises

1. Predictive Modeling Using Regression

a. Return to the Chapter 4 Organics diagram in the Exercises project. Use the StatExplore tool
on the ORGANICS data source.

1) Connect the StatExplore node to the ORGANICS node as shown.

. ™
E'EF StetExplore
e -/

s2eml ata Partition

é % Decision Tree
Decision Tree
(2)

g ORGANICS

&

2

@
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2) Run the StatExplore node and view the results.

5 Results - Node: StatExplore” Diagram: Organmcs

File Edit View Window

8 B |l [E &

Il Chi-Square Plot

Target = Target Buy

0.25
0.20
015+
010+
0.05
0.00

Cramer's V(Sum)

Ordered Inputs

Dodotech
28MAT0a

In preparation for regression, is any missing values imputation needed? If yes, should you do this
imputation before generating the decision tree models? Why or why not?

Go to line 38 in the Output window. Several of the class inputs have missing values.

Variable
DemClusterGroup
DemGender
DemReg

DemTVReg
PromClass
TargetBuy

Role
INPUT
INPUT
INPUT
INPUT
INPUT
TARGE

Class Variable Summary Statistics

Number
of
Levels Missing
8 674
4 2512
6 465
14 465
4 0
T 2 0

Mode
Mode Percentage
C 20.55
F 54.67
South East 38.85
London 27.85
Silver 38.57
0 75.23

Mode

D

M
Midlands
Midlands
Tin

1

Mode2
Percentage

19.
26.
30.
14.
29.
24.

70
17
33
05
19
77

Go to line 65 of the Output window. Most of the Interval inputs also have missing values.

Variable ROLE
DemAffl INPUT
DemAge INPUT
PromSpend  INPUT
PromTime INPUT

5
442

Mean
8.71
3.80
0.59
6.56

Interval Variable Summary Statistics

Std.
Deviation
3.42
13.21
7559.05
4,66

Non
Missing
21138
20715
22223
21942

Missing
1085
1508

0
281

Minimum
0.00
18.00
0.01
0.00

Median
8
54
2000
5

Maximum
34.00
79.00
296313.85
39.00

You do not need to impute before the Decision Tree node. Decision trees have built-in ways
to handle missing values. (See Chapter 3.)
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c. Add an Impute node to the diagram and connect it to the Data Partition node. Set the node to
impute U for unknown class variable values and the overall mean for unknown interval variable
values. Create imputation indicators for all imputed inputs.

Decision Tree
T Esh@ l

= E'EF StatExplore Y Decision Tree

ORGAMICS -

ata Partition

- [.

‘I‘.—:I- - npLte ]

1) Select Default Input Method = Default Constant Value.

2) Type U for the Default Character Value.

Cefault Input Method Default Constant Value
-Default Target Method  |Mone
ize VYalues

3) Select Indicator Variable Type = Unigue.

4) Select Indicator Variable Role = Input.

Hide Original Yariables

Blindicatar Yariahles

Type IInigue
|Source Imputed Yariables
Role Input
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d. Add a Regression node to the diagram and connect it to the Impute node.

Decision Tree
-
é::;;m
I ?E'E StatExplore - * g Decigion Tree

e. Select the Stepwise selection and Validation Error as the selection criterion.

BModel Selection
Selection Model Stepwise
-[Selection Criterion alidation Error [
-lUse Selection Defaults 3]
Selection Options @

f. Run the Regression node and view the results. Which variables are included in the final model?
Which variables are important in this model? What is the validation ASE?

1) The Results window opens.

50 Results - NMode: Regression: Diagram: Organics

File Edit Wiew Window

ERENERERET

Score Rankings Overlay: TargetBuy

Statistics

| Cumutative Lirt v | el
argetBuy  _AIC_ Akaike's Inf.. 9591 247
'EE 357 argetbuy  _ASE_ Average So..  0.138587
s 254 argetBuy  _AVERR_  Average Err... 0.435342
g f-g: argetBuy _DFE_ Degrees af .. 11104
1.0 ; ; ; | : | argetBuy  _DFM_ Model Degr... a
0 20 40 G0 80 100 argetBuy _DFT_ Total Degre.. 11112
argetBuy  _DIW_ Divisor for A 23224

Percentile

argetBuy Errar Functi...

96745257
N 13A78K

VALIDATE |

Dodotech
28MATO0S

Absohte Coefficie...

Effect Number
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2)

3)

4)

Go to line 664 in the Output window.

The selected model, based on the CHOOSE=VERROR criterion, is the model trained in
Step 6. It consists of the following effects:

Intercept IMP_DemAffl IMP_DemAge IMP_DemGender M_DemAffl M_DemAge M_DemGender

The odds ratios indicate the effect that each input has on the logit score.

Point
Effect Estimate
IMP_DemAffl 1.283
IMP_DemAge 0.947
IMP_DemGender F vs U 6.967
IMP_DemGender M vs U 2.899
M_DemAffl 0 vs 1 0.708
M_DemAge 0 vs 1 0.796
M_DemGender 0 vs 1 0.685

The validation ASE is given in the Fit Statistics window.

F=7] Fit Statistics © ol

Target Fit Statistics | Statistics Train YValidation | Test
Lahel

TargetBuy  _AIC_ Akaike's Inf.. 9E51.287 ! -

TargetBuy  _ASE_ Average S50q... 0138587 0137156

TargetBuy _AVERRE_  Awerage Err... 0.435352 0.432266

TargetBuy _DFE_ Degrees of ... 11104

TargetBuy _DFM_ hodel Degr... a

TargetBuy _DFT_ Total Deqgre... 11112 !

TargetBuy  _DIV_ Divisor for A 23224 22222

TargetBuy _ERRE_ Error Functi... YETH. 28T 960581

TargetBuy _FPE_ Final Predic... 0138736 !

TargetBuy  _MAK_ faximum A... 0991147 0937434

TargetBuy  _MSE_ Mean Sgua... 0138687 01371456

T:ri? £:1111 - il
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g.

In preparation for regression, are any transformations of the data warranted? Why or why not?

1) Open the Variables window of the Regression node.

2) Select all Interval inputs.

1 Variables - Heg

IMP_DemClusDefault Ho

{none) | [ not |Equalto || | | Bpply || Reset |
Name | Use | Report | Role | Level | Type | Order | Lahel | Forma |
DemCluster Default No i Meigborhood
efault Ho
efault Mo

Maminal

Character Imputed: Meig

IMP_DemGenDefault Mo

Mominal

Character Imputed: Gen

IMP_DemBed Default No

Mominal

Character Irmputed: Geo

IMP_Dem TYRiDefault Mo

Mominal

Character Imputed: Tele

w_DemclusteDefault Ho

efault Mo
mi_DemAfl  Default Mo Mumetric Imputation In
mM_DemAge Default No Input Binary klumeric Imputation In
Input MNumetric Imputatian In

Binary

¥]

Explore.. || Updatepath || ok | cancel |
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3) Select Explore.... The Explore window opens.

Explore = EMWSSImpt_TRATN

File Yiew Actions Window

&/|[0]4]

E}E Sample Properties - Ll IMP_DemaAge
Ll Prope y | Value | 2500

Riows LInknown - ] 2000 —

Columns 29 @ 15001

Library EMAS 3 5 oo
__lemhber [IWPT TE AL >IN = 0

T T T T T T T T
18.0 302 424 546 GE.8 Ta9.0

Imputed: Age

Ll MP_PromTime :

. 5000
100000007 40 & 4000
40000001120 B 3000 -
50000002313 2000
70000003131 10007
110000007420 ——T T T
17000000931 4 ) 0o 78 156 234 32 390

Imputed: Loyalty Card Tenure

Ll IMP_Demarm

4000
3000
2000
1000

o

T T T
124 155 1886

Imputed: Affluence Grade
Both Card Tenure and Affluence Grade have moderately skewed distributions.
Applying a log transformation to these inputs might improve the model fit.
h. Disconnect the Impute node from the Data Partition node.

i. Add a Transform Variables node to the diagram and connect it to the Data Partition node.

J. Connect the Transform Variables node to the Impute node.

Decision Tree
-
&(2)
-~ StsltEprore S~ Decizion Tree




4.9 Solutions 4-97

k. Apply a log transformation to the DemAFFfI and PromT ime inputs.

1) Open the Variables window of the Transform Variables node.

2) Select Method = Log for the DemAfFI and PromT ime inputs.

£ Variables - Trans

[none] e D niot |Equalt0 v| | || | | Apply | | Reset |
Name Method | MNumberofBins | Role Level Type Order Label
0g 4.0
DemAge Default 4.0|Input Interval Mumeric Age
CemCluster Default 4.0 Rejected klarminal Character Meighorhood
DemClusterGrDerault 4.0|Input Mominal Character MNeighborhoo
DemGender  Default 4.0/Input Marminal Character Gender
DemReqg Default 4.0|Input Mominal Character Geographic R
DemTyRey  Default 4.0/Input Marminal Character Television Re
PromClass  Default A.0|Input Mominal Character Loyalty Status
PromSpend  Default 4.0/Input Interval MU Eric Total Spend
fpromTime  Log soipt  mewal e Lojalycar]
TargetAmt Default 4.0 Rejected Interval Murmetic Organics Pur
TargetBuy Default 4.0 Target Binary Hurmetric Crganics Pur
. | ¥
Explore.. || UpdatePath || OK || Cancel |

3) Select OK to close the Variables window.

I. Run the Transform Variables node. Explore the exported training data. Did the transformations

result in less skewed distributions?

1) The easiest way to explore the created inputs is to open the Variables window in the
subsequent Impute node. Make sure that you update the Impute node before opening its

Variables window.

£ Variables = Impt

[none] e D niot |Equalt0 v| | || | | Apply | | Reset |
Name Use | Method | Use Tree | Role | Lewel Type | Order | Laha
CemAge Default Default Default Input Interval kumeric Age
DemCluster Default Default Default Rejected MNominal Character MNeigho
CemClusterGiDefault Default Default Input Mominal Character Meighb
DemGender Default Default Default Input MNominal Character Gender
DermReq Default Default Default Input MNorminal Character Geogra
CemTvRe Default Default Derault Input rMominal Character Televisi
efault Default Default
PromClass  Default Default Default Input MNorminal Character Lowalty
FromSpend  Default Default Default Input Interval MHurmeric Total 5
TargetAmt Default Default Default Rejected Interval Mumetric Qrgani
TargetBuy Default Default Default Target Binary Murmeric Qrgani
1[E I
Explore.. || UpdatePath || OK || Cancel |
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2) With the LOG DemAffl and LOG PromTime inputs selected, select Explore....

Explore= EMWSSUTrans” TRATN

File Yiew Actions Wihdow

&0 &]

18 sample Properties : Ll LOG_Demar
J Property | Yalue 5000
Rows Inknown
Calurmns 16 4000
Likrary EmiyS 3 z
Member TRAMS_TRAIN g 3000
Type |Et g
Sample Method Random 2 2=
Fetch Size EYS
Fetched Rows 11112 1uuyS
Random Seed 123445 04
T T T T T T T T T T T
0.00 0.69 1.39 2.08 277 347
| Apply ‘ | Plot... | Transformed: Affluence Grade

EMWS3.Trans_TRAIN © i Ll LOG_PromTime

Ohs# | DATAOBS |[Custormer L |Afluence G..
10000000140
40000001120
50000002313
70000003131

110000007420

120000008514

130000010006

140000010219

150000010812

170000011932

180000014656 D00 074 148 221 295 369

Transformed: Loyalty Card Tenure

Frequency

1
2
3
4
a
B
T
g
9
1]
1

—_

The distributions are nicely symmetric.
m. Rerun the Regression node. Do the selected variables change? How about the validation ASE?
1) Go to line 664 of the Output window.

The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 6.
It consists of the following effects:

Intercept IMP_DemAge IMP_DemGender IMP_LOG_DemAffl M_DemAge M _DemGender M_LOG_DemAffl

2) IMP_LOG DemAffl andM_LOG _DemATffl replace IMP _DemAfFfl and
M_ _DemAfFfl, respectively.
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3) Apparently the log transformation actually reduced the validation ASE slightly.

F=] Fit Statistics
Target Fit Statistics | Statistics Train Yalidation (T
Label L
TargetBuy A Akaike's Inf.. 9758 609 Lo~
TargetBuy  _ASE_ Average 50.. 0.139545 0138204
TargetBuy _AVERR_  Awverage Err.. 0.433382 0.435489
TargetBuy _DFE_ Degrees of ... 11104
TargetBuy  _DFM_ model Degr... g
TargetBuy _DFT_ Total Degre... 11112 !
TargetBuy DIV Divigar for A... 23224 22227
TargetBuy _ERR_ Error Functi... 9742 609 9ReE.581
TargetBuy _FPE_ Final Predic... 0139746 !
TargetBuy MR Maximum A... 0882317 0.9944045
TargetBuy _MSE_ Mean Sgua... 0139646 0138204
TargetBuy _MOBS_ Surm of Fre... 11112 11111 |-
4 |G T b

n. Create a full second-degree polynomial model. How does the validation average squared error for
the polynomial model compare to the original model?

1) Add another Regression node to the diagram and rename it Polynomial Regression.

[ Decision Tree |
Ve
":EF StatExplore é 2 Decision Tree
=] -

Data Partition

E ORGANICS

&
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2) Make the indicated changes to the Polynomial Regression Properties panel.

[ElEquation

-ain Effects

‘Two-Factor Interactions  ves

Polynomial Terms eg

‘Paolnomial Degree 2

User Terms Mo

“Term Editor D
Class Targets

Regression Type Lonistic Regression
-Link Function Logit

Maodel Options

Suppress Intercept g [u]

Jlhput Cading Deviation

Maocdel Selection
-Selection Madal Stepwise L
Selection Criterion alidation Error
-llse Selection Defaults  ves
“Selection Options lg,

3) Goto line 1598

The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 7.
It consists of the following effects:

Intercept IMP_DemAge IMP_DemGender IMP_LOG_DemAffl M_DemAge
M_DemGender*M_LOG_DemAffl IMP_DemAge*IMP_DemAge IMP_LOG_DemAffl*IMP_LOG_DemAffl

4) The Polynomial Regression node adds additional interaction terms.

5) Examine the Fit Statistics window.

=] Fit Statistics :

Target Fit Statistics | Statistics Train Validation | T
Label

argetBuy  _AIC_ Akaike's Inf.. 9529 938 L~

argetBuy _ASE_ Average 5. 0136407 0134038 | &

argetBuy _AVERR_ Awerage Err... 0428003 0421824

argetBuy _DFE_ Degrees of ... 11103

argetBuy _DFW_ hodel Degr... 9

argetBuy _DFT_ Tatal Degre... 11112 !

argetBuy  _DIY_ Divisor far A... 22224 22222

argetBuy _ERFE_ Error Functi... 94511.938 93r3.Ta4

argetBuy  _FPE_ Final Predic... 0136628 !

argetBuy A Maximum A.. 0985713 0.98523

The additional terms reduce the validation ASE slightly.
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Solutions to Student Activities (Polls/Quizzes)

T AT . |
4.01 Multiple Choice Poll - Correct Answer

What is the logistic regression prediction for the indicated
point?
a.-0.243
b. 0.56
c. yellow

It depends ...

logit( p )} =-081+092x, + 111 x,

1

A-—
P 1 + g-logit(p)

21




	Chapter 4 Introduction to Predictive Modeling: Regressions
	4.1 Introduction
	Managing Missing Values
	Data Assessment
	Imputation
	Missing Indicators
	Imputation Results

	Running the Regression Node

	4.2 Selecting Regression Inputs
	Selecting Inputs

	4.3 Optimizing Regression Complexity
	Optimizing Complexity
	Iteration Plot
	Full Model Selection
	Best Sequence Model


	4.4 Interpreting Regression Models
	Interpreting a Regression Model

	4.5 Transforming Inputs
	Transforming Inputs
	The Transform Variables Tool
	Regressions with Transformed Inputs


	4.6 Categorical Inputs
	Recoding Categorical Inputs

	4.7 Polynomial Regressions (Self-Study)
	Adding Polynomial Regression Terms Selectively
	Interaction Terms
	Quadratic Terms

	Adding Polynomial Regression Terms Autonomously (SelfStudy)
	Exercises

	4.8 Chapter Summary
	4.9 Solutions
	Solutions to Exercises
	Solutions to Student Activities (Polls/Quizzes)



