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Regressions offer a different approach to prediction compared to decision trees. Regressions, as 
parametric models, assume a specific association structure between inputs and target. By contrast, trees, 
as predictive algorithms, do not assume any association structure; they simply seek to isolate 
concentrations of cases with like-valued target measurements. 

The regression approach to the model essentials in SAS Enterprise Miner is outlined over the following 
pages. Cases are scored using a simple mathematical prediction formula. One of several heuristic 
sequential selection techniques is used to pick from a collection of possible inputs and creates a series  
of models with increasing complexity. Fit statistics calculated from validation data select the best model 
from the sequence. 
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Regressions predict cases using a mathematical equation involving values of the input variables. 
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^
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...  

In standard linear regression, a prediction estimate for the target variable is formed from a simple linear 
combination of the inputs. The intercept centers the range of predictions, and the remaining parameter 
estimates determine the trend strength (or slope) between each input and the target. The simple structure 
of the model forces changes in predicted values to occur in only a single direction (a vector in the space  
of inputs with elements equal to the parameter estimates). 

Intercept and parameter estimates are chosen to minimize the squared error between the predicted and 
observed target values (least squares estimation). The prediction estimates can be viewed as a linear 
approximation to the expected (average) value of a target conditioned on observed input values. 

Linear regressions are usually deployed for targets with an interval measurement scale. 
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Logistic Regression Prediction Formula
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= w0 + w1 x1 + w2 x2
^ ^ ^· · logit scores

...

^
log 

p
1 – p( )^

 

Logistic regressions are closely related to linear regressions. In logistic regression, the expected value  
of the target is transformed by a link function to restrict its value to the unit interval. In this way, model 
predictions can be viewed as primary outcome probabilities. A linear combination of the inputs generates 
a logit score, the log of the odds of primary outcome, in contrast to the linear regression’s direct 
prediction of the target. 

 If your interest is ranking predictions, linear and logistic regressions yield virtually identical 
results. 
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9

Logit Link Function

9

= w0 + w1 x1 + w2 x2
^ ^ ^· ·

...
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^
log 
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For binary prediction, any monotonic function that maps the unit interval to the real number line can  
be considered as a link. The logit link function is one of the most common. Its popularity is due, in part, 
to the interpretability of the model. 

11

Logit Link Function

11

= w0 + w1 x1 + w2 x2
^ ^ ^· ·

...

^
log 

p
1 – p( )^

1
1 + e-logit( p )

p = ^
^

^logit( p ) 

To obtain prediction estimates, the logit equation is solved for p. ^

=

 

The predictions can be decisions, rankings, or estimates. The logit equation produces a ranking or logit 
score. To get a decision, you need a threshold. The easiest way to get a meaningful threshold is to convert 
the prediction ranking to a prediction estimate. You can obtain a prediction estimate using a 
straightforward transformation of the logit score, the logistic function. The logistic function is simply the 
inverse of the logit function. You can obtain the logistic function by solving the logit equation for p. 



 4.1  Introduction 4-7 

14
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To demonstrate the properties of a logistic regression model, consider the two-color prediction problem 
introduced in Chapter 3. As before, the goal is to predict the target color, based on the location in the unit 
square. To make use of the prediction formulation, you need estimates of the intercept and other model 
parameters. 

16

Simple Prediction Illustration – Regressions 
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The presence of the logit link function complicates parameter estimation. Least squares estimation is 
abandoned in favor of maximum likelihood estimation. The likelihood function is the joint probability 
density of the data treated as a function of the parameters. The maximum likelihood estimates are the 
values of the parameters that maximize the probability of obtaining the training sample. 
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Simple Prediction Illustration – Regressions 
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Parameter estimates are obtained by maximum likelihood estimation. These estimates can be used in the 
logit and logistic equations to obtain predictions. The plot on the right shows the prediction estimates 
from the logistic equation. One of the attractions of a standard logistic regression model is the simplicity 
of its predictions. The contours are simple straight lines. (In higher dimensions, they would be 
hyperplanes.) 
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4.01 Multiple Choice Poll
What is the logistic regression prediction for the indicated 
point?
a. -0.243
b. 0.56
c. yellow
d. It depends …
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To score a new case, the values of the inputs are plugged into the logit or logistic equation. This action 
creates a logit score or prediction estimate. Typically, if the prediction estimate is greater than 0.5 (or 
equivalently, the logit score is positive), cases are usually classified to the primary outcome. (This 
assumes an equal misclassification cost.) 

The answer to the question posed is, of course, it depends. 
• Answer A , the logit score, is reasonable if the goal is ranking. 
• Answer B, the prediction estimate from the logistic equation, is appropriate if the goal is estimation. 
• Answer C, a classification, is a good choice if the goal is deciding dot color. 
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Regressions: Beyond the Prediction Formula
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While the prediction formula would seem to be the final word in scoring a new case with a regression 
model, there are actually several additional issues that must be addressed. 
• What should be done when one of the input values used in the prediction formula is missing? You 

might be tempted to simply treat the missing value as zero and skip the term involving the missing 
value. While this approach can generate a prediction, this prediction is usually biased beyond reason. 

• How do you interpret the logistic regression model? Certain inputs influence the prediction more than 
others. A means to quantify input importance is needed. 

• How do you score cases with unusual values? Regression models make their best predictions for cases 
near the centers of the input distributions. If an input can have (on rare occasion) extreme or outlying 
values, the regression should respond appropriately. 

• What value should be used in the prediction formula when the input is not a number? Categorical 
inputs are common in predictive modeling. They did not present a problem for the rule-based 
predictions of decision trees, but regression predictions come from algebraic formulas that require 
numeric inputs. (You cannot multiply marital status by a number.) A method to include nonnumeric 
data in regression is needed. 

• What happens when the relationship between the inputs and the target (or rather logit of the target)  
is not a straight line? It is preferable to be able to build regression models in the presence of nonlinear 
(and even nonadditive) input target associations. 
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 The above issues affect both model construction and model deployment. The first of these, 
handling missing values, is dealt with immediately. The remaining issues are addressed, in turn,  
at the end of this chapter. 

24

Missing Values and Regression Modeling

24
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targetinputs

Problem 1: Training data cases with missing 
values on inputs used by a regression model 
are ignored.

...  

Missing values present two distinct problems. The first relates to model construction. The default method 
for treating missing values in most regression tools in SAS Enterprise Miner is complete-case analysis.  
In complete-case analysis, only those cases without any missing values are used in the analysis. 
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Missing Values and Regression Modeling
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...  

Even a smattering of missing values can cause an enormous loss of data in high dimensions. For instance, 
suppose that each of the k input variables is missing at random with probability α. In this situation, the 
expected proportion of complete cases is as follows: 

( )kα−1  

Therefore, a 1% probability of missing (α=.01) for 100 inputs leaves only 37% of the data for analysis, 
200 leaves 13%, and 400 leaves 2%. If the “missingness” were increased to 5% (α=.05), then <1% of the 
data would be available with 100 inputs. 
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30

Missing Values and the Prediction Formula

30

Problem 2: Prediction formulas cannot 
score cases with missing values.

...  

The second missing value problem relates to model deployment or using the prediction formula. How 
would a model built on the complete cases score a new case if it had a missing value? To decline to score 
new incomplete cases would be practical only if there were a very small number of missing values. 
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31

Missing Value Issues

31
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...  

A remedy is needed for the two problems of missing values. The appropriate remedy depends on the 
reason for the missing values. 
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Missing values arise for a variety of reasons. For example, the time since last donation to a card campaign 
is meaningless if someone did not donate to a card campaign. In the PVA97NK data set, several 
demographic inputs have missing values in unison. The probable cause was no address match for the 
donor. Finally, certain information, such as an individual’s total wealth, is closely guarded and is often  
not disclosed. 

34

Missing Value Remedies

34
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...  
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The primary remedy for missing values in regression models is a missing value replacement strategy. 
Missing value replacement strategies fall into one of two categories. 

Synthetic 
distribution 
methods 

use a one-size-fits-all approach to handle missing values. Any case with a 
missing input measurement has the missing value replaced with a fixed 
number. The net effect is to modify an input’s distribution to include a 
point mass at the selected fixed number. The location of the point mass in 
synthetic distribution methods is not arbitrary. Ideally, it should be chosen 
to have minimal impact on the magnitude of an input’s association with the 
target. With many modeling methods, this can be achieved by locating the 
point mass at the input’s mean value. 

Estimation 
methods 

eschew the one-size-fits-all approach and provide tailored imputations for 
each case with missing values. This is done by viewing the missing value 
problem as a prediction problem. That is, you can train a model to predict 
an input’s value from other inputs. Then, when an input’s value is 
unknown, you can use this model to predict or estimate the unknown 
missing value. This approach is best suited for missing values that result 
from a lack of knowledge, that is, no-match or nondisclosure, but it is not 
appropriate for not-applicable missing values. 

Because predicted response might be different for cases with a missing input value, a binary imputation 
indicator variable is often added to the training data. Adding this variable enables a model to adjust its 
predictions in the situation where "missingness" itself is correlated with the target. 
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Managing Missing Values 

 

The demonstrations in this chapter build on the demonstrations of Chapters 2 and 3. At this point, the 
process flow diagram has the following structure: 

 

Data Assessment 

Continue the analysis at the Data Partition node. As discussed above, regression requires that a case have 
a complete set of input values for both training and scoring. Follow these steps to examine the data status 
after the partition. 

1. Select the Data Partition

2. Select 

 node. 

Exported Data   from the Data Partition node property sheet. 
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The Exported Data window opens. 

3. Select the TRAIN data port and select Explore…. 

 

There are several inputs with a noticeable frequency of missing values, for example, Age and the 
replaced value of median income. 
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There are several ways to proceed: 
• Do nothing. If there are very few cases with missing values, this is a viable option. The difficulty 

with this approach comes when the model must predict a new case that contains a missing value. 
Omitting the missing term from the parametric equation usually produces an extremely biased 
prediction. 

• Impute a synthetic value for the missing value. For example, if an interval input contains a missing 
value, replace the missing value with the mean of the nonmissing values for the input. This 
eliminates the incomplete case problem but modifies the input’s distribution. This can bias the model 
predictions. 
Making the missing value imputation process part of the modeling process allays the modified 
distribution concern. Any modifications made to the training data are also made to the validation data 
and the remainder of the modeling population. A model trained with the modified training data will 
not be biased if the same modifications are made to any other data set that the model might 
encounter (and the data has a similar pattern of missing values). 

• Create a missing indicator for each input in the data set. Cases often contain missing values for a 
reason. If the reason for the missing value is in some way related to the target variable, useful 
predictive information is lost. 
The missing indicator is 1 when the corresponding input is missing and 0 otherwise. Each missing 
indicator becomes an input to the model. This enables modeling of the association between the target 
and a missing value on an input. 

4. Close the Explore and Exported Data windows. 
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Imputation 

To address missing values in the PVA97NK data set, use the following steps to impute synthetic data 
values and create missing value indicators: 

1. Select the Modify

2. Drag an 

 tab. 

Impute

3. Connect the 

 tool into the diagram workspace. 

Data Partition node to the Impute node. In the display, below, the Decision Tree 
modeling nodes are repositioned for clarity. 
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4. Select the Impute node and examine the Properties panel. 

 

The defaults of the Impute node are as follows: 
• For interval inputs, replace any missing values with the mean of the nonmissing values. 
• For categorical inputs, replace any missing values with the most frequent category. 

 These are acceptable default values and are used throughout the rest of the course. 

With these settings, each input with missing values generates a new input. The new input named 
IMP_original_input_name will have missing values replaced by a synthetic value and nonmissing 
values copied from the original input. 
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Missing Indicators 

Use the following steps to create missing value indicators.  The settings for missing value indicators are 
found in the Score property group. 

 

1. Select Indicator Variables  Type  Unique

2. Select 

. 

Indicator Variables  Role  Input

With these settings, new inputs named M_original_input_name will be added to the training data to 
indicate the synthetic data values. 

. 
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Imputation Results 

Run the Impute node and review the Results window. Three inputs had missing values. 

 

With all of the missing values imputed, the entire training data set is available for building the logistic 
regression model. In addition, a method is in place for scoring new cases with missing values. (See 
Chapter 7.) 
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Running the Regression Node 

 

There are several tools in SAS Enterprise Miner to fit regression or regression-like models. By far, the 
most commonly used (and, arguably, the most useful) is the simply named Regression tool. 

Use the following steps to build a simple regression model. 

1. Select the Model

2. Drag a 

 tab. 

Regression

3. Connect the 

 tool into the diagram workspace. 

Impute node to the Regression node. 

 

The Regression node can create several types of regression models, including linear and logistic. The 
type of default regression type is determined by the target’s measurement level. 
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4. Run the Regression node and view the results. The Results - Node: Regression Diagram window 
opens. 

 

5. Maximize the Output window by double-clicking its title bar. 

The initial lines of the Output window summarize the roles of variables used (or not) by the 
Regression node. 

Variable Summary 
 
ROLE         LEVEL      COUNT 
 
INPUT       BINARY         5  
INPUT       INTERVAL      20  
INPUT       NOMINAL        3  
REJECTED    INTERVAL       2  
TARGET      BINARY         1 

The fit model has 28 inputs that predict a binary target. 
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Ignore the output related to model events and predicted and decision variables. The next lines give more 
information about the model, including the training data set name, target variable name, number of target 
categories, and most importantly, the number of model parameters. 

Model Information 
 

Training Data Set              EMWS2.IMPT_TRAIN.VIEW      
DMDB Catalog                   WORK.REG_DMDB              
Target Variable                TargetB (Target Gift Flag) 
Target Measurement Level       Ordinal                    
Number of Target Categories    2                          
Error                          MBernoulli                 
Link Function                  Logit                      
Number of Model Parameters     86                         
Number of Observations         4843 

Based on the introductory material about logistic regression that is presented above, you might expect to 
have a number of model parameters equal to the number of input variables. This ignores the fact that a 
single nominal input (for example, DemCluster) can generate scores of model parameters. 

Next, consider maximum likelihood procedure, overall model fit, and the Type 3 Analysis of Effects. 

The Type 3 Analysis tests the statistical significance of adding the indicated input to a model that already 
contains other listed inputs. A value near 0 in the Pr > ChiSq column approximately indicates a significant 
input; a value near 1 indicates an extraneous input. 

Type 3 Analysis of Effects 
  
                                      Wald 
Effect                    DF    Chi-Square    Pr > ChiSq 
 

DemCluster                53       58.9098        0.2682 
DemGender                  2        0.5088        0.7754 
DemHomeOwner               1        0.1630        0.6864 
DemMedHomeValue            1        2.4464        0.1178 
DemPctVeterans             1        5.2502        0.0219 
GiftAvg36                  1        1.6709        0.1961 
GiftAvgAll                 1        0.0339        0.8540 
GiftAvgLast                1        0.0026        0.9593 
GiftCnt36                  1        1.2230        0.2688 
GiftCntAll                 1        0.1308        0.7176 
GiftCntCard36              1        1.0244        0.3115 
GiftCntCardAll             1        0.0061        0.9380 
GiftTimeFirst              1        1.6064        0.2050 
GiftTimeLast               1       21.5351        <.0001 
IMP_DemAge                 1        0.0701        0.7911 
IMP_GiftAvgCard36          1        0.0476        0.8273 
IMP_REP_DemMedIncome       1        0.1408        0.7074 
M_DemAge                   1        3.0616        0.0802 
M_GiftAvgCard36            1        0.9190        0.3377 
M_REP_DemMedIncome         1        0.6228        0.4300 
PromCnt12                  1        3.2335        0.0721 
PromCnt36                  1        1.0866        0.2972 
PromCntAll                 1        1.9715        0.1603 
PromCntCard12              1        0.0294        0.8639 
PromCntCard36              1        0.0049        0.9441 
PromCntCardAll             1        2.9149        0.0878 
StatusCat96NK              5       11.3434        0.0450 
StatusCatStarAll           1        1.7487        0.1860 
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The statistical significance measures a range from <0.0001 (highly significant) to 0.9593 (highly 
dubious). Results such as this suggest that certain inputs can be dropped without affecting the 
predictive prowess of the model. 

6. Restore the Output window to its original size by double-clicking its title bar. Maximize the Fit 
Statistics window. 

 

If the decision predictions are of interest, model fit can be judged by misclassification. If estimate 
predictions are the focus, model fit can be assessed by average squared error. There appears to be 
some discrepancy between the values of these two statistics in the train and validation data. This 
indicates a possible overfit of the model. It can be mitigated by using an input selection procedure. 

7. Close the Results window. 
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4.2 Selecting Regression Inputs 
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The second task that all predictive models should perform is input selection. One way to find the optimal 
set of inputs for a regression is simply to try every combination. Unfortunately, the number of models to 
consider using this approach increases exponentially in the number of available inputs. Such an 
exhaustive search is impractical for realistic prediction problems. 

An alternative to the exhaustive search is to restrict the search to a sequence of improving models. While 
this might not find the single best model, it is commonly used to find models with good predictive 
performance. The Regression node in SAS Enterprise Miner provides three sequential selection methods. 
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43

Sequential Selection – Forward

43

Entry CutoffInput p-value

 

Forward selection creates a sequence of models of increasing complexity. The sequence starts with the 
baseline model, a model predicting the overall average target value for all cases. The algorithm searches 
the set of one-input models and selects the model that most improves upon the baseline model. It then 
searches the set of two-input models that contain the input selected in the previous step and selects the 
model showing the most significant improvement. By adding a new input to those selected in the previous 
step, a nested sequence of increasingly complex models is generated. The sequence terminates when no 
significant improvement can be made. 

Improvement is quantified by the usual statistical measure of significance, the p-value. Adding terms in 
this nested fashion always increases a model’s overall fit statistic. By calculating the change in the fit 
statistic and assuming that the change conforms to a chi-squared distribution, a significance probability,  
or p-value, can be calculated. A large fit statistic change (corresponding to a large chi-squared value) is 
unlikely due to chance. Therefore, a small p-value indicates a significant improvement. When no p-value 
is below a predetermined entry cutoff, the forward selection procedure terminates. 
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51

Sequential Selection – Backward

51

Stay CutoffInput p-value

 

In contrast to forward selection, backward selection creates a sequence of models of decreasing 
complexity. The sequence starts with a saturated model, which is a model that contains all available 
inputs, and therefore, has the highest possible fit statistic. Inputs are sequentially removed from the 
model. At each step, the input chosen for removal least reduces the overall model fit statistic. This is 
equivalent to removing the input with the highest p-value. The sequence terminates when all remaining 
inputs have a p-value that is less than the predetermined stay cutoff. 
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Sequential Selection – Stepwise

58

Input p-value Entry Cutoff
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Stepwise selection combines elements from both the forward and backward selection procedures. The 
method begins in the same way as the forward procedure, sequentially adding inputs with the smallest 
p-value below the entry cutoff. After each input is added, however, the algorithm reevaluates the 
statistical significance of all included inputs. If the p-value of any of the included inputs exceeds the stay 
cutoff, the input is removed from the model and reentered into the pool of inputs that are available for 
inclusion in a subsequent step. The process terminates when all inputs available for inclusion in the model 
have p-values in excess of the entry cutoff and all inputs already included in the model have p-values 
below the stay cutoff. 
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Selecting Inputs 

 

Implementing a sequential selection method in the Regression node requires a minor change to the 
Regression node settings. 

1. Select Selection Model  Stepwise on the Regression node property sheet. 

 

The Regression node is now configured to use stepwise selection to choose inputs for the model. 

2. Run the Regression node and view the results. 

3. Maximize the Output window. 

4. Hold down the CTRL key and type G. The Go To Line window opens. 

 

5. Type 79 in the Enter line number field and select OK. 
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The stepwise procedure starts with Step 0, an intercept-only regression model. The value of the 
intercept parameter is chosen so that the model predicts the overall target mean for every case. The 
parameter estimate and the training data target measurements are combined in an objective function. 
The objective function is determined by the model form and the error distribution of the target. The 
value of the objective function for the intercept-only model is compared to the values obtained in 
subsequent steps for more complex models. A large decrease in the objective function for the more 
complex model indicates a significantly better model. 

Step 0: Intercept entered. 
The DMREG Procedure 

Newton-Raphson Ridge Optimization 
Without Parameter Scaling 

Parameter Estimates                                      1 
 

Optimization Start 
 
Active Constraints                     0    Objective Function    3356.9116922 
Max Abs Gradient Element    5.707879E-12 
 

Optimization Results 
 
Iterations                                 0   Function Calls                                 3 
Hessian Calls                              1   Active Constraints                             0 
Objective Function              3356.9116922   Max Abs Gradient Element            5.707879E-12 
Ridge                                      0   Actual Over Pred Change                        0 
 
Convergence criterion (ABSGCONV=0.00001) satisfied. 
 
     Likelihood Ratio Test for Global Null Hypothesis: BETA=0 
  
     -2 Log Likelihood          Likelihood 
  Intercept     Intercept &          Ratio 
       Only      Covariates     Chi-Square       DF     Pr > ChiSq 
 
   6713.823        6713.823         0.0000        0          . 
 

Analysis of Maximum Likelihood Estimates 
  
                                Standard          Wald                  Standardized 
Parameter     DF    Estimate       Error    Chi-Square    Pr > ChiSq        Estimate    Exp(Est) 
 
Intercept      1    -0.00041      0.0287          0.00        0.9885                       1.000 
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Step 1 adds one input to the intercept-only model. The input and corresponding parameter are chosen 
to produce the largest decrease in the objective function. To estimate the values of the model 
parameters, the modeling algorithm makes an initial guess for their values. The initial guess is 
combined with the training data measurements in the objective function. Based on statistical theory, 
the objective function is assumed to take its minimum value at the correct estimate for the parameters. 
The algorithm decides whether changing the values of the initial parameter estimates can decrease the 
value of the objective function. If so, the parameter estimates are changed to decrease the value of the 
objective function and the process iterates. The algorithm continues iterating until changes in the 
parameter estimates fail to substantially decrease the value of the objective function. 

Step 1: Effect GiftCnt36 entered. 
 

The DMREG Procedure 
Newton-Raphson Ridge Optimization 

Without Parameter Scaling 
 

Parameter Estimates                                        2 
 

Optimization Start 
 
Active Constraints                     0     Objective Function    3356.9116922 
Max Abs Gradient Element    89.678463762 
                                                                                            Ratio 
                                                                                          Between 
                                                                                           Actual 
                                                     Objective     Max Abs                    and 
               Function       Active    Objective     Function    Gradient              Predicted 
Iter  Restarts    Calls  Constraints     Function       Change     Element     Ridge       Change 
   1         0        2           0          3316      41.4036      2.1746         0        1.014 
   2         0        3           0          3315       0.0345     0.00690         0        1.002 
   3         0        4           0          3315     2.278E-7    4.833E-8         0        1.000 
 

Optimization Results 
 
Iterations                               3  Function Calls                                6 
Hessian Calls                            4  Active Constraints                            0 
Objective Function             3315.473573  Max Abs Gradient Element            4.833086E-8 
Ridge                                    0  Actual Over Pred Change             0.999858035 
 
Convergence criterion (GCONV=1E-6) satisfied. 

The output next compares the model fit in Step 1 with the model fit in Step 0. The objective functions 
of both models are multiplied by 2 and differenced. The difference is assumed to have a chi-squared 
distribution with one degree of freedom. The hypothesis that the two models are identical is tested. A 
large value for the chi-squared statistic makes this hypothesis unlikely. 

The hypothesis test is summarized in the next lines. 
Likelihood Ratio Test for Global Null Hypothesis: BETA=0 

  
     -2 Log Likelihood          Likelihood 
  Intercept     Intercept &          Ratio 
       Only      Covariates     Chi-Square       DF     Pr > ChiSq 
 
   6713.823        6630.947        82.8762        1         <.0001 
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The output summarizes an analysis of the statistical significance of individual model effects. For the 
one input model, this is similar to the global significance test above. 

Type 3 Analysis of Effects 
  
                                      Wald 
Effect                    DF    Chi-Square    Pr > ChiSq 
GiftCnt36                  1       79.4757        <.0001 

Finally, an analysis of individual parameter estimates is made. (The standardized estimates and the 
odds ratios merit special attention and are discussed in the next section of this chapter.) 

Analysis of Maximum Likelihood Estimates 
 
                                       Standard          Wald                  Standardized 
Parameter            DF    Estimate       Error    Chi-Square    Pr > ChiSq        Estimate    Exp(Est) 
 
Intercept            1     -0.3956      0.0526         56.53        <.0001                       0.673 
GiftCnt36            1      0.1250      0.0140         79.48        <.0001          0.1474       1.133 
 
          Odds Ratio Estimates 
                                    Point 
Effect                           Estimate 
GiftCnt36                           1.133 

The standardized estimates present the effect of the input on the log-odds of donation. The values are 
standardized to be independent of the input’s unit of measure. This provides a means of ranking the 
importance of inputs in the model. 

The odds ratio estimates indicate by what factor the odds of donation increase for each unit change in 
the associated input. Combined with knowledge of the range of the input, this provides an excellent 
way to judge the practical (as opposed to the statistical) importance of an input in the model. 

The stepwise selection process continues for eight steps. After the eighth step, neither adding nor 
removing inputs from the model significantly changes the model fit statistic. At this point the Output 
window provides a summary of the stepwise procedure. 

6. Go to line 850 to view the stepwise summary. 

The summary shows the step in which each input was added and the statistical significance of each 
input in the final eight-input model. 
NOTE: No (additional) effects met the 0.05 significance level for entry into the model. 
 

Summary of Stepwise Selection 
  
                Effect                 Number         Score          Wald 
    Step    Entered              DF        In    Chi-Square    Chi-Square    Pr > ChiSq 
 
       1    GiftCnt36             1         1       81.6807                      <.0001 
       2    GiftTimeLast          1         2       23.2884                      <.0001 
       3    DemMedHomeValue       1         3       16.9872                      <.0001 
       4    GiftAvgAll            1         4       14.8514                      0.0001 
       5    StatusCat96NK         5         5       18.2293                      0.0027 
       6    DemPctVeterans        1         6        7.4187                      0.0065 
       7    M_GiftAvgCard36       1         7        7.1729                      0.0074 
       8    M_DemAge              1         8        4.6501                      0.0311 
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The default selection criterion selects the model from Step 8 as the model with optimal complexity. 
As the next section shows, this might not be the optimal model, based on the fit statistic that is 
appropriate for your analysis objective. 

The selected model, based on the CHOOSE=NONE criterion, is the model trained in Step 8. It consists of the following effects: 
 
Intercept  DemMedHomeValue  DemPctVeterans  GiftAvgAll  GiftCnt36  GiftTimeLast  M_DemAge  M_GiftAvgCard36  StatusCat96NK 

For convenience, the output from Step 8 is repeated. An excerpt from the analysis of individual 
parameter estimates is shown below. 

Analysis of Maximum Likelihood Estimates 
  
                                             Standard          Wald                Standardized 
Parameter               DF    Estimate       Error    Chi-Square    Pr > ChiSq      Estimate    Exp(Est) 
 
Intercept                1      0.2727      0.2024          1.82        0.1779                     1.314 
DemMedHomeValue          1    1.385E-6    3.009E-7         21.18        <.0001        0.0763       1.000 
DemPctVeterans           1     0.00658     0.00261          6.38        0.0115        0.0412       1.007 
GiftAvgAll               1     -0.0136     0.00444          9.33        0.0023       -0.0608       0.987 
GiftCnt36                1      0.0587      0.0187          9.79        0.0018        0.0692       1.060 
GiftTimeLast             1     -0.0376     0.00770         23.90        <.0001       -0.0837       0.963 
M_DemAge             0   1      0.0741      0.0344          4.65        0.0311                     1.077 
M_GiftAvgCard36      0   1      0.1112      0.0411          7.30        0.0069                     1.118 
StatusCat96NK        A   1     -0.0880      0.0927          0.90        0.3423                     0.916 
StatusCat96NK        E   1      0.4974      0.1818          7.48        0.0062                     1.644 
StatusCat96NK        F   1     -0.4570      0.1303         12.30        0.0005                     0.633 
StatusCat96NK        L   1      0.1456      0.3735          0.15        0.6966                     1.157 
StatusCat96NK        N   1     -0.1206      0.1323          0.83        0.3621                     0.886 

The parameter with the largest standardized estimate (in absolute value) is GiftTimeLast. 

7. Restore the Output window and maximize the Fit Statistics window. 

 

The simpler model improves on both the validation misclassification and average squared error 
measures of model performance. 
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4.3 Optimizing Regression Complexity 

61

Model Essentials – Regressions

61

Predict new cases.

Select useful inputs.

Optimize complexity. Best model
from sequence

Prediction
formula

Sequential
selection

...  

Regression complexity is optimized by choosing the optimal model in the sequential selection sequence. 

62

Model Fit versus Complexity

62

1 2 3 4 5 6

Model fit statistic

training

validation

...

Evaluate each
sequence step.

 

The process involves two steps. First, fit statistics are calculated for the models generated in each step of 
the selection process. Both the training and validation data sets are used. 
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63

Select Model with Optimal Validation Fit

63

1 2 3 4 5 6

Model fit statistic

Choose simplest
optimal model.

Evaluate each
sequence step.

...  

Then, as with the decision tree in Chapter 3, the simplest model (that is, the one with the fewest inputs) 
with the optimal fit statistic is selected. 
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Optimizing Complexity 

 

Iteration Plot 

The following steps illustrate the use of the iteration plot in the Regression tool Results window. 

In the same manner as the decision tree, you can tune a regression model to give optimal performance on 
the validation data. The basic idea involves calculating a fit statistic for each step in the input selection 
procedure and selecting the step (and corresponding model) with the optimal fit statistic value. To avoid 
bias, of course, the fit statistic should be calculated on the validation data set. 

1. Select View  Model  Iteration Plot. The Iteration Plot window opens. 

 

The Iteration Plot window shows (by default) average squared error (training and validation) from the 
model selected in each step of the stepwise selection process. 

 Surprisingly, this plot contradicts the naïve assumption that a model fit statistic calculated on 
training data will always be better than the same statistic calculated on validation data. This 
concept, called the optimism principle, is correct only on the average, and usually manifests 
itself only when overly complex (overly flexible) models are considered. It is not uncommon 
for training and validation fit statistic plots to cross (possibly several times). These crossings 
illustrate unquantified variability in the fit statistics. 

Apparently, the smallest average squared error occurs in Step 4, rather than in the final model, Step 8. 
If your analysis objective requires estimates as predictions, the model from Step 4 should provide 
slightly less biased ones. 
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2. Select Select Chart  Misclassification Rate. 

 

The iteration plot shows that the model with the smallest misclassification rate occurs in Step 3.  
If your analysis objective requires decision predictions, the predictions from the Step 3 model are  
as accurate as the predictions from the final Step 8 model. 

The selection process stopped at Step 8 to limit the amount of time spent running the stepwise 
selection procedure. In Step 8, no more inputs had a chi-squared p-value below 0.05. The value 0.05 
is a somewhat arbitrary holdover from the days of statistical tables. With the validation data available 
to gauge overfitting, it is possible to eliminate this restriction and obtain a richer pool of models to 
consider. 
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Full Model Selection 

Use the following steps to build and evaluate a larger sequence of regression models: 

1. Close the Results - Regression window. 

2. Select Use Selection Default  No from the Regression node Properties panel. 

 

3. Select Selection Options  . 
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The Selection Options window opens. 
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4. Type 1.0 as the Entry Significance Level value. 

5. Type 0.5 as the Stay Significance Level value. 

 

The Entry Significance value enables any input in the model. (The one chosen will have the smallest 
p-value.) The Stay Significance value keeps any input in the model with a p-value less than 0.5. This 
second choice is somewhat arbitrary. A smaller value can terminate the stepwise selection process 
earlier, while a larger value can maintain it longer. A Stay Significance of 1.0 forces stepwise to 
behave in the manner of a forward selection. 

6. Run the Regression node and view the results. 
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7. Select View  Model  Iteration Plot. The Iteration Plot window opens. 

 

The iteration plot shows the smallest average squared errors occurring in Steps 4 or 12. There is a 
significant change in average squared error in Step 13, when the DemCluster input is added. 
Inclusion of this nonnumeric input improves training performance but hurts validation performance. 
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8. Select Select Chart  Misclassification Rate. 

 

The iteration plot shows that the smallest validation misclassification rates occur at Step 3. Notice 
that the change in the assessment statistic in Step 13 is much less pronounced. 

Best Sequence Model 

You can configure the Regression node to select the model with the smallest fit statistic (rather than the 
final stepwise selection iteration). This method is how SAS Enterprise Miner optimizes complexity for 
regression models. 

1. Close the Results - Regression window. 

2. If your predictions are decisions, use the following setting: 

Select Selection Criterion  Validation Misclassification. (Equivalently, you can select 
Validation Profit/Loss

3. If your predictions are estimates (or rankings), use the following setting: 

. The equivalence is demonstrated in Chapter 6.) 

Select Selection Criterion  Validation Error. 

 

 The continuing demonstration assumes validation error selection criteria. 
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4. Run the Regression

5. Select 

 node and view the results. 

View  Model  Iteration Plot. 

 

The vertical blue line shows the model with the optimal validation error (Step 12). 

6. Go to line 2690. 
Analysis of Maximum Likelihood Estimates 

  
                                           Standard          Wald                  Standardized 
Parameter                DF    Estimate       Error    Chi-Square    Pr > ChiSq        Estimate   Exp(Est) 
 
Intercept                 1      0.4999      0.2575          3.77        0.0522                      1.649 
DemMedHomeValue           1    1.416E-6    3.011E-7         22.12        <.0001          0.0781      1.000 
DemPctVeterans            1     0.00651     0.00261          6.23        0.0126          0.0407      1.007 
GiftAvg36                 1     -0.0101     0.00355          8.02        0.0046         -0.0561      0.990 
GiftCnt36                 1      0.0574      0.0197          8.53        0.0035          0.0677      1.059 
GiftTimeLast              1     -0.0415     0.00829         25.07        <.0001         -0.0923      0.959 
M_DemAge           0      1      0.0720      0.0345          4.36        0.0367                      1.075 
M_GiftAvgCard36    0      1      0.1126      0.0412          7.46        0.0063                      1.119 
PromCntCard12             1     -0.0381      0.0281          1.85        0.1740         -0.0282      0.963 
StatusCat96NK      A      1     -0.0353      0.0957          0.14        0.7122                      0.965 
StatusCat96NK      E      1      0.4010      0.1950          4.23        0.0398                      1.493 
StatusCat96NK      F      1     -0.4485      0.1314         11.66        0.0006                      0.639 
StatusCat96NK      L      1      0.1733      0.3743          0.21        0.6433                      1.189 
StatusCat96NK      N      1     -0.0988      0.1353          0.53        0.4649                      0.906 
StatusCatStarAll   0      1     -0.0701      0.0367          3.64        0.0563                      0.932 
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While not all the p-values are less than 0.05, the model seems to have a better validation average 
squared error (and misclassification) than the model selected using the default Significance Level 
settings. 

In short, there is nothing sacred about 0.05. It is not unreasonable to override the defaults of the 
Regression node to enable selection from a richer collection of potential models. On the other hand, 
most of the reduction in the fit statistics occurs during inclusion of the first three inputs. If you seek a 
parsimonious model, it is reasonable to use a smaller value for the Stay Significance parameter. 
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4.4 Interpreting Regression Models 

66

Beyond the Prediction Formula

66

Manage missing values.

Interpret the model.

Account for nonlinearities.

Handle extreme or unusual values.

Use nonnumeric inputs.

...  

After you build a model, you might be asked to interpret the results. Fortunately regression models lend 
themselves to easy interpretation. 
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69

Odds Ratios and Doubling Amounts

69

Odds ratio: Amount 
odds change with unit 
change in input.Doubling amount:

Input change is required
to double odds.

1    ⇒ odds × exp(wi)
⇒ odds ×20.69

wi

Δxi consequence

...

= w0 + w1 x1 + w2 x2
^ ^ ^· ·

^
log 

p
1 – p( )^ logit scores

 

There are two equivalent ways to interpret a logistic regression model. Both relate changes in input 
measurements to changes in odds of primary outcome. 
• An odds ratio expresses the increase in primary outcome odds associated with a unit change in an 

input. It is obtained by exponentiation of the parameter estimate of the input of interest. 
• A doubling amount gives the amount of change required for doubling the primary outcome odds. It is 

equal to log(2) ≈ 0.69 divided by the parameter estimate of the input of interest. 

 If the predicted logit scores remain in the range -2 to +2, linear and logistic regression models of 
binary targets are virtually indistinguishable. Balanced stratified sampling (Chapter 6) often 
ensures this. Thus, the prevalence of balanced sampling in predictive modeling might, in fact, be 
a vestigial practice from a time when maximum likelihood estimation was computationally 
extravagant. 
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Interpreting a Regression Model 

 

The following steps demonstrate how to interpret a model using odds ratios: 

1. Go to line 2712 of the regression model output. 
Odds Ratio Estimates 

 
                                    Point 
Effect                           Estimate 
 
DemMedHomeValue                     1.000 
DemPctVeterans                      1.007 
GiftAvg36                           0.990 
GiftCnt36                           1.059 
GiftTimeLast                        0.959 
M_DemAge             0 vs 1         1.155 
M_GiftAvgCard36      0 vs 1         1.253 
PromCntCard12                       0.963 
StatusCat96NK        A vs S         0.957 
StatusCat96NK        E vs S         1.481 
StatusCat96NK        F vs S         0.633 
StatusCat96NK        L vs S         1.179 
StatusCat96NK        N vs S         0.898 
StatusCatStarAll     0 vs 1         0.869 

This output includes most of situations you will encounter when you build a regression model. 

For GiftAvg36, the odds ratio estimate equals 0.990. This means that for each additional dollar 
donated (on average) in the past 36 months, the odds of donation on the 97NK campaign change by a 
factor of 0.99, a 1% decrease. 

For GiftCnt36, the odds ratio estimate equals 1.059. This means that for each additional donation 
in the past 36 months, the odds of donation on the 97NK campaign change by a factor of 1.059, a 
5.9% increase. 

For M_DemAge, the odds ratio (0 versus 1) estimate equals 1.155. This means that cases with a 0 
value for M_DemAge are 1.155 times more likely to donate than cases with a 1 value for M_DemAge. 

 The unusual value of 1.000 for the DemMedHomeValue odds ratio has a simple explanation. 
Unit (that is, single dollar) changes in home value do not change the odds of response by an 
amount captured in three significant digits. To obtain a more meaningful value for this input’s 
effect on response odds, you can multiply the parameter estimate by 1000 and exponentiate 
the result. You then have the change in response odds based on 1000 dollar changes in 
median home value. Equivalently, you could use the Transform Variables node to replace 
DemMedHomeValue with DemMedHmVal1000=DemMedHomeValue/1000, and a unit 
increase on that new input would represent a $1000 increase in the DemMedHomeValue. 

2. Close the Results window. 
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4.5 Transforming Inputs 

72

Beyond the Prediction Formula

72

Manage missing values.

Interpret the model.

Account for nonlinearities.

Handle extreme or unusual values.

Use nonnumeric inputs.

...  

Classical regression analysis makes no assumptions about the distribution of inputs. The only assumption 
is that the expected value of the target (or some function thereof) is a linear combination of fixed input 
measurements. 

Why should you worry about extreme input distributions? 
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74

Extreme Distributions and Regressions

74

high leverage pointsskewed input
distribution

standard regression

true association

standard regression

true association

Original Input Scale

...  

There are at least two compelling reasons. 
• First, in most real-world applications, the relationship between expected target value and input value 

does not increase without bound. Rather, it typically tapers off to some horizontal asymptote. Standard 
regression models are unable to accommodate such a relationship. 

• Second, as a point expands from the overall mean of a distribution, the point has more influence, or 
leverage, on model fit. Models built on inputs with extreme distributions attempt to optimize fit for the 
most extreme points at the cost of fit for the bulk of the data, usually near the input mean. This can 
result in an exaggeration or an understating of an input’s association with the target. 

Both of these phenomena are seen in the above slide. 

 The first concern can be addressed by abandoning standard regression models for more flexible 
modeling methods. Abandoning standard regression models is often done at the cost of model 
interpretability and, more importantly, failure to address the second concern of leverage. 
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Extreme Distributions and Regressions
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...  

A simpler and, arguably, more effective approach transforms or regularizes offending inputs in order to 
eliminate extreme values. 

76

Original Input Scale

Regularizing Input Transformations

76

more symmetric
distribution

Regularized Scale

standard regression

standard regression

...

Original Input Scale

high leverage pointsskewed input
distribution

 

Then, a standard regression model can be accurately fit using the transformed input in place of the 
original input. 
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78

Regularizing Input Transformations

78
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Original Input Scale

regularized estimate

regularized estimate

true association
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Often this can solve both problems mentioned above. This not only mitigates the influence of extreme 
cases, but also creates the desired asymptotic association between input and target on the original input 
scale. 
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Transforming Inputs 

 

Regression models are sensitive to extreme or outlying values in the input space. Inputs with highly 
skewed or highly kurtotic distributions can be selected over inputs that yield better overall predictions. To 
avoid this problem, analysts often regularize the input distributions using a simple transformation. The 
benefit of this approach is improved model performance. The cost, of course, is increased difficulty in 
model interpretation. 

The Transform Variables tool enables you to easily apply standard transformations (in addition to the 
specialized ones seen in Chapter 9) to a set of inputs. 

The Transform Variables Tool 

Use the following steps to transform inputs with the Transform Variables tool: 

1. Remove the connection between the Data Partition node and the Impute node. 

 

2. Select the Modify

3. Drag a 

 tab. 

Transform Variables

4. Connect the 

 tool into the diagram workspace. 

Data Partition node to the Transform Variables

5. Connect the 

 node. 

Transform Variables node to the Impute node. 
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6. Adjust the diagram icons for aesthetics. (So that you can see the entire diagram, the zoom level is 
reduced.) 

 

The Transform Variables node is placed before the Impute node to keep the imputed values at the 
average (or center of mass) of the model inputs. 

7. Select the Variables   property of the Transform Variables node. 
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The Variables - Trans window opens. 
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8. Select all inputs with Gift in the name. 
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9. Select Explore…. The Explore window opens. 

 

The GiftAvg and GiftCnt inputs show some degree of skew in their distribution. The 
GiftTime inputs do not. To regularize the skewed distributions, use the log transformation. For 
these inputs, the order of magnitude of the underlying measure predicts the target rather than the 
measure itself. 

10. Close the Explore window. 
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11. Deselect the two inputs with GiftTime in their names. 
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12. Select Method  Log for one of the remaining selected inputs. The selected method changes from 
Default to Log for the GiftAvg and GiftCnt inputs. 

 

13. Select OK

14. Run the Transform Variables node and view the results. 

 to close the Variables - Trans window. 

15. Maximize the Output window and go to line 28. 
                          Input 
Input Name       Role     Level            Name           Level              Formula 
 
GiftAvg36        INPUT   INTERVAL   LOG_GiftAvg36        INTERVAL    log(GiftAvg36  + 1)      
GiftAvgAll       INPUT   INTERVAL   LOG_GiftAvgAll       INTERVAL    log(GiftAvgAll  + 1)     
GiftAvgCard36    INPUT   INTERVAL   LOG_GiftAvgCard36    INTERVAL    log(GiftAvgCard36  + 1)  
GiftAvgLast      INPUT   INTERVAL   LOG_GiftAvgLast      INTERVAL    log(GiftAvgLast  + 1)    
GiftCnt36        INPUT   INTERVAL   LOG_GiftCnt36        INTERVAL    log(GiftCnt36  + 1)      
GiftCntAll       INPUT   INTERVAL   LOG_GiftCntAll       INTERVAL    log(GiftCntAll  + 1)     
GiftCntCard36    INPUT   INTERVAL   LOG_GiftCntCard36    INTERVAL    log(GiftCntCard36  + 1)  
GiftCntCardAll   INPUT   INTERVAL   LOG_GiftCntCardAll   INTERVAL    log(GiftCntCardAll  + 1) 

Notice the Formula column. While a log transformation was specified, the actual transformation used 
was log(input + 1). This default action of the Transform Variables tool avoids problems with 0-values 
of the underlying inputs. 

16. Close the Transform Variables - Results window. 
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Regressions with Transformed Inputs 

The following steps revisit regression, and use the transformed inputs: 

1. Run the diagram from the Regression node and view the results. 

2. Go to line 3754 the Output window. 
Summary of Stepwise Selection 

 
                        Effect                           Number         Score          Wald 
  Step   Entered                Removed            DF        In    Chi-Square    Chi-Square    Pr > ChiSq 
 
    1    LOG_GiftCnt36                              1         1       95.0275                      <.0001 
    2    GiftTimeLast                               1         2       21.1330                      <.0001 
    3    DemMedHomeValue                            1         3       17.7373                      <.0001 
    4    LOG_GiftAvgAll                             1         4       21.7306                      <.0001 
    5    DemPctVeterans                             1         5        7.0742                      0.0078 
    6    StatusCat96NK                              5         6       13.7906                      0.0170 
    7    LOG_GiftCntCard36                          1         7        5.9966                      0.0143 
    8    M_DemAge                                   1         8        5.0301                      0.0249 
    9    DemCluster                                53         9       61.2167                      0.2049 
   10    StatusCatStarAll                           1        10        1.2431                      0.2649 
   11    PromCntCard12                              1        11        1.4604                      0.2269 
   12    PromCntAll                                 1        12        1.0022                      0.3168 
   13    LOG_GiftCntAll                             1        13        2.2990                      0.1295 
   14    PromCnt12                                  1        14        0.8158                      0.3664 
   15    PromCntCardAll                             1        15        1.8875                      0.1695 
   16                           PromCntCard12       1        14                      0.0358        0.8500 
   17    M_REP_DemMedIncome                         1        15        0.6075                      0.4357 
   18    LOG_GiftAvg36                              1        16        0.4691                      0.4934 
   19    M_LOG_GiftAvgCard36                        1        17        0.6226                      0.4301 
   20    GiftTimeFirst                              1        18        0.3972                      0.5285 
   21                           GiftTimeFirst       1        17                      0.3971        0.5286 
 
The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 4. It consists of 
the following effects: 
 
Intercept  DemMedHomeValue  GiftTimeLast  LOG_GiftAvgAll  LOG_GiftCnt36   

The stepwise selection process took 21 steps, and the selected model came from step 4. Notice that 
half of the selected inputs are log transformations of the original gift variables. 
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3. Go to line 3800 to view more statistics from the selected model. 
Analysis of Maximum Likelihood Estimates 

 
                                             Standard          Wald                  Standardized 
Parameter                 DF    Estimate       Error    Chi-Square    Pr > ChiSq        Estimate    Exp(Est) 
 
Intercept                  1      0.8251      0.2921          7.98        0.0047                       2.282 
DemMedHomeValue            1    1.448E-6    3.002E-7         23.26        <.0001          0.0798       1.000 
GiftTimeLast               1     -0.0341     0.00756         20.33        <.0001         -0.0758       0.966 
LOG_GiftAvgAll             1     -0.3469      0.0747         21.58        <.0001         -0.0895       0.707 
LOG_GiftCnt36              1      0.3736      0.0728         26.34        <.0001          0.0998       1.453 
 
           Odds Ratio Estimates 
 
                                     Point 
Effect                            Estimate 
 
DemMedHomeValue                      1.000 
GiftTimeLast                         0.966 
LOG_GiftAvgAll                       0.707 
LOG_GiftCnt36                        1.453 

4. Select View  Model  Iteration Plot. 

 

The selected model (based on minimum error) occurs in Step 4. The value of average squared error 
for this model is slightly lower than that for the model with the untransformed inputs. 



4-64 Chapter 4  Introduction to Predictive Modeling: Regressions 

5. Select Select Chart  Misclassification Rate. 

 

The misclassification rate with the transformed input model is nearly the same as that for the 
untransformed input model. The model with the lowest misclassification rate comes from Step 3.  
If you want to optimize on the misclassification rate, you must change this property in the Regression 
node’s property sheet. 

6. Close the Results window. 
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4.6 Categorical Inputs 

81

Beyond the Prediction Formula

81

Manage missing values.

Interpret the model.

Account for nonlinearities.

Handle extreme or unusual values.

Use nonnumeric inputs.

...  

Using nonnumeric or categorical inputs presents another problem for regressions. As was seen in the 
earlier demonstrations, inclusion of a categorical input with excessive levels can lead to overfitting. 

83

Nonnumeric Input Coding

83

Level DI

1 0 0 0 0 0 0 0

DA DB DC DD DE DF DG DH

0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

0
0
0
0
0
0
0
1

A
B
C
D
E
F
G
H
I

...  
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84

DI

0
0
0
0
0
0
0
0
1

DI

0
0
0
0
0
0
0
0
1

Coding Redundancy

84

Level

1 0 0 0 0 0 0 0

DA DB DC DD DE DF DG DH

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

A
B
C
D
E
F
G
H
I

...  

To represent these nonnumeric inputs in a model, you must convert them to some sort of numeric values. 
This conversion is most commonly done by creating design variables (or dummy variables), with each 
design variable representing approximately one level of the categorical input. (The total number of design 
variables required is, in fact, one less than the number of inputs.) A single categorical input can vastly 
increase a model’s degrees of freedom, which, in turn, increases the chances of a model overfitting. 

85

DI

0
0
0
0
0
0
0
0
1

Coding Consolidation

85

Level

1 0 0 0 0 0 0 0

DA DB DC DD DE DF DG DH

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

A
B
C
D
E
F
G
H
I

...  
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86

DI

0
0
0
0
0
0
0
0
1

Coding Consolidation

86

Level

1 0 0 0 0 0 0 0

DABCD DB DC DD DEF DF DGH DH

1 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

A
B
C
D
E
F
G
H
I

 

There are many remedies to this problem. One of the simplest remedies is to use domain knowledge to 
reduce the number of levels of the categorical input. In this way, level-groups are encoded in the model in 
place of the original levels. 
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Recoding Categorical Inputs 

 

In Chapter 2, you used the Replacement tool to eliminate an inappropriate value in the median income 
input. This demonstration shows how to use the Replacement tool to facilitate combining input levels of a 
categorical input. 

1. Remove the connection between the Transform Variables node and the Impute node. 

 

2. Select the Modify

3. Drag a 

 tab. 

Replacement

4. Connect the 

 tool into the diagram workspace. 

Transform Variables node to the Replacement

5. Connect the 

 node. 

Replacement node to the Impute node. 
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You need to change some of the node’s default settings so that the replacements are limited to a single 
categorical input. 

6. In the Interval Variables property group, select Default Limits Method  None. 

 

7. In the Class Variables property group, select Replacement Editor   from the Replacement node 
Properties panel. 
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The Replacement Editor opens. 

 

The categorical input Replacement Editor lists all levels of each binary, ordinal, and nominal input. 
You can use the Replacement column to reassign values to any of the levels. 

The input with the largest number of levels is DemCluster, which has so many levels that 
consolidating the levels using the Replacement Editor would be an arduous task. (Another, 
autonomous method for consolidating the levels of DemCluster is presented as a special topic in 
Chapter 8.) 

For this demonstration, you combine the levels of another input, StatusCat96NK. 
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8. Scroll the Replacement Editor to view the levels of StatusCat96NK. 

 

The input has six levels, plus a level to represent unknown values (which do not occur in the training 
data). The levels of StatusCat96NK will be consolidated as follows: 
• Levels A and S (active and star donors) indicate consistent donors and are grouped into a single 

level, A. 
• Levels F and N (first-time and new donors) indicate new donors and are grouped into a single 

level, N. 
• Levels E and L (inactive and lapsing donors) indicate lapsing donors and are grouped into a single 

level L. 
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9. Type A as the Replacement level for StatusCat96NK levels A and S. 

10. Type N as the Replacement level for StatusCat96NK levels F and N. 

11. Type L as the Replacement level for StatusCat96NK levels L and E. 

 

12. Select OK to close the Replacement Editor. 
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13. Run the Replacement node and view the results. 

 

The Total Replacement Counts window shows the number of replacements that occur in the training 
and validation data. 
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14. Select View  Model  Replaced Levels. The Replaced Levels window opens. 

 

The replaced level values are consistent with expectations. 

15. Close the Results window. 

16. Run the Regression node and view the results. 

17. Go to line 3659 of the Output window. 
Summary of Stepwise Selection 

  
                           Effect                           Number         Score          Wald 
    Step    Entered                Removed            DF        In    Chi-Square    Chi-Square    Pr > ChiSq 
 
       1    LOG_GiftCnt36                              1         1       95.0275                      <.0001 
       2    GiftTimeLast                               1         2       21.1330                      <.0001 
       3    DemMedHomeValue                            1         3       17.7373                      <.0001 
       4    LOG_GiftAvgAll                             1         4       21.7306                      <.0001 
       5    DemPctVeterans                             1         5        7.0742                      0.0078 
       6    REP_StatusCat96NK                          2         6        9.7073                      0.0078 
       7    LOG_GiftCntCard36                          1         7        6.2112                      0.0127 
       8    M_DemAge                                   1         8        4.8754                      0.0272 
       9    DemCluster                                53         9       61.7834                      0.1910 
      10    StatusCatStarAll                           1        10        1.6743                      0.1957 
      11    PromCntCard12                              1        11        1.3961                      0.2374 
      12    PromCntAll                                 1        12        1.1442                      0.2848 
      13    LOG_GiftCntAll                             1        13        1.8685                      0.1717 
      14    PromCnt12                                  1        14        0.6761                      0.4109 
      15    PromCntCardAll                             1        15        2.0585                      0.1514 
      16                           PromCntCard12       1        14                      0.0216        0.8830 
      17    LOG_GiftAvg36                              1        15        0.7608                      0.3831 
      18    M_LOG_GiftAvgCard36                        1        16        0.7343                      0.3915 
      19    M_REP_DemMedIncome                         1        17        0.5853                      0.4443 
      20    GiftTimeFirst                              1        18        0.3821                      0.5365 
      21                           GiftTimeFirst       1        17                      0.3821        0.5365 

The REP_StatusCat96NK input (created from the original StatusCat96NK input) is included 
in Step 6 the Stepwise Selection process. The three-level input is represented by two degrees of 
freedom. 

18. Close the Results window. 
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4.7 Polynomial Regressions (Self-Study) 

90

Beyond the Prediction Formula

90

Manage missing values.

Interpret the model.

Account for nonlinearities.

Handle extreme or unusual values.

Use nonnumeric inputs.

...  

The Regression tool assumes (by default) a linear and additive association between the inputs and the 
logit of the target. If the true association is more complicated, such an assumption might result in biased 
predictions. For decisions and rankings, this bias can (in some cases) be unimportant. For estimates, this 
bias appears as a higher value for the validation average squared error fit statistic. 

91

Standard Logistic Regression

91

= w0 + w1 x1 + w2 x2
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In the dot color problem, the (standard logistic regression) assumption that the concentration of yellow 
dots increases toward the upper right corner of the unit square seems to be suspect. 
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When minimizing prediction bias is important, you can increase the flexibility of a regression model by 
adding polynomial combinations of the model inputs. This enables predictions to better match the true 
input/target association. It also increases the chances of overfitting while simultaneously reducing the 
interpretability of the predictions. Therefore, polynomial regression must be approached with some care. 

In SAS Enterprise Miner, adding polynomial terms can be done selectively or autonomously. 
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Adding Polynomial Regression Terms Selectively 

 

This demonstration shows how to use the Term Editor window to selectively add polynomial regression 
terms. 

You can modify the existing Regression node or add a new Regression node. If you add a new node, you 
must configure the Polynomial Regression node to perform the same tasks as the original. An alternative 
is to make a copy of the existing node. 

1. Right-click the Regression node and select Copy

2. Right-click the diagram workspace and select 

 from the menu. 

Paste

3. Select the 

 from the menu. A new Regression node is added 
with the label Regression (2) to distinguish it from the existing one. 

Regression (2)

4. Rename the new regression node Polynomial Regression (2). The (2) is retained to help 
with model identification in later chapters. 

 node. The properties are identical to the existing node. 

5. Connect the Polynomial Regression (2) node to the Impute node. 

 

To add polynomial terms to the model, you use the Term Editor. To use the Term Editor, you need to 
enable User Terms. 
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6. Select User Terms  Yes in the Polynomial Regression (2) property panel. 

 

The Term Editor is now unlocked and can be used to add specific polynomial terms to the regression 
model. 

3. Select Term Editor   from the Polynomial Regression Properties panel. 
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The Terms window opens. 
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Interaction Terms 

Suppose that you suspect an interaction between home value and time since last gift. (Perhaps a recent 
change in property values affected the donation patterns.) 

1. Select DemMedHomeValue

2. Select the Add button, 

 in the Variables panel of the Terms dialog box. 

. The DemMedHomeValue input is added to the Term panel. 
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3. Repeat the previous step to add GiftTimeLast. 

 
4. Select Save. An interaction between the selected inputs is now available for consideration by the 

Regression node. 
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Quadratic Terms 

Similarly, suppose that you suspect a parabola-shaped relationship between the logit of donation 
probability and median home value. 

1. Select DemMedHomeValue

2. Select the Add button, 

. 

. The DemMedHomeValue input is added to the Term panel. 

3. Select  again. Another DemMedHomeValue input is added to the Term panel. 

 

4. Select Save. A quadratic median home value term is available for consideration by the model. 
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5. Select OK

6. Run the Polynomial Regression node and view the results. 

 to close the Terms dialog box. 

7. Go to line 3752 in the Output window. 
Summary of Stepwise Selection 

  
                                  Effect                                   Number         Score          Wald 
    Step    Entered                            Removed               DF        In    Chi-Square    Chi-Square    Pr > ChiSq 
 
       1    LOG_GiftCnt36                                             1         1       95.0275                      <.0001 
       2    GiftTimeLast                                              1         2       21.1330                      <.0001 
       3    DemMedHomeValue*GiftTimeLast                              1         3       19.6032                      <.0001 
       4    LOG_GiftAvgAll                                            1         4       21.8432                      <.0001 
       5    DemPctVeterans                                            1         5        7.0965                      0.0077 
       6    REP_StatusCat96NK                                         2         6        9.7708                      0.0076 
       7    LOG_GiftCntCard36                                         1         7        6.2012                      0.0128 
       8    M_DemAge                                                  1         8        4.9143                      0.0266 
       9    DemMedHomeValue*DemMedHomeValue                           1         9        3.6530                      0.0560 
      10    StatusCatStarAll                                          1        10        1.8153                      0.1779 
      11    PromCntCard12                                             1        11        1.2570                      0.2622 
      12    PromCntAll                                                1        12        1.3799                      0.2401 
      13                                       StatusCatStarAll       1        11                      0.4504        0.5021 
      14    DemCluster                                               53        12       58.7308                      0.2736 
      15    LOG_GiftCntAll                                            1        13        1.0539                      0.3046 
      16    StatusCatStarAll                                          1        14        1.2548                      0.2626 
      17    PromCnt12                                                 1        15        0.6591                      0.4169 
      18    PromCntCardAll                                            1        16        2.0806                      0.1492 
      19                                       PromCntCard12          1        15                      0.0180        0.8931 
      20    LOG_GiftAvg36                                             1        16        0.7426                      0.3888 
      21    M_REP_DemMedIncome                                        1        17        0.6424                      0.4228 
      22    M_LOG_GiftAvgCard36                                       1        18        0.6013                      0.4381 
      23    GiftTimeFirst                                             1        19        0.3946                      0.5299 
      24                                       GiftTimeFirst          1        18                      0.3945        0.5299 

The stepwise selection summary shows the interaction term added in Step 3 and the quadratic term in 
Step 9. 

8. Close the Results window. 

This raises the obvious question: How do you know which nonlinear terms to include in a model? 
Unfortunately, there is no simple solution to this question in SAS Enterprise Miner, other than including 
all polynomial and interaction terms in the selection process. 
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Adding Polynomial Regression Terms Autonomously 
(Self-Study) 

SAS Enterprise Miner has the ability to add every polynomial combination of inputs to a regression 
model. Obviously, this feature must be used with some care, because the number of polynomial input 
combinations increases rapidly with input count. 

For instance, the PVA97NK data set has 20 interval inputs. If you want to consider every quadratic 
combination of these 20 inputs, your selection procedure must sequentially plod through more than 200 
inputs. This is not an overwhelming task for today’s fast computers. 

Follow these steps to explore a full two-factor stepwise selection process: 

1. Select Two-Factor Interaction  Yes

2. Select 

 in the Polynomial Regression property panel. 

Polynomial Terms  Yes in the Polynomial Regression Properties panel. 

 

3. Run the Polynomial Regression (2) node and view the results. (In general, this might take longer than 
most activities.) 
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4. Go to line 1774 of the Output window. 
Summary of Stepwise Selection 

  

                      Effect                                Number         Score          Wald 
Step    Entered                             Removed         DF        In    Chi-Square    Chi-Square    Pr > ChiSq 
 

   1    LOG_GiftCnt36*LOG_GiftCntCardAll                     1         1      101.0902                      <.0001 
   2    GiftTimeLast*LOG_GiftAvgLast                         1         2       33.9163                      <.0001 
   3    DemMedHomeValue*DemPctVeterans                       1         3       25.2441                      <.0001 
   4    REP_StatusCat96NK                                    2         4       10.2804                      0.0059 
   5    DemHomeOwner*M_LOG_GiftAvgCard36                     1         5        5.8659                      0.0154 
   6    DemCluster*DemGender                               106         6      134.9632                      0.0302 
   7    GiftTimeLast*PromCnt12                               1         7        5.6507                      0.0174 
   8    LOG_GiftCntCard36*PromCnt12                          1         8        3.7134                      0.0540 
   9    LOG_GiftAvgAll                                       1         9        5.8292                      0.0158 
  10    DemCluster                                          50        10       64.6125                      0.0801 
  11                                        DemCluster      53         9                     39.8737        0.9086 

 Surprisingly, the selection process takes only 11 steps. This is the result of the 106 degree-of-
freedom DemCluster and DemGender interaction in Step 6. As the iteration plot shows 
below, the model is hopelessly overfit after this step. Inputs with many levels are problematic 
for predictive models. It is a good practice to reduce the impact of these inputs either by 
consolidating the levels or by simply excluding them from the analysis. 

5. Scroll down in the Output Window. 
The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 3. It 
consists of the following effects: 
 

Intercept DemMedHomeValue*DemPctVeterans GiftTimeLast*LOG_GiftAvgLast LOG_GiftCnt36*LOG_GiftCntCardAll 

The selected model includes only three terms! 
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6. Select View  Model  Iteration Plot. 

 

The validation average squared error of the three-term model is lower than any other model 
considered to this point. 
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Exercises 

 

1.   Predictive Modeling Using Regression 

a.   Return to the Chapter 3 Organics diagram. Attach the StatExplore tool to the ORGANICS data 
source and run it. 

b.   In preparation for regression, is any missing values imputation needed?   

If yes, should you do this imputation before generating the decision tree models?   

Why or why not?   

c.   Add an Impute node to the diagram and connect it to the Data Partition

d.   Add a 

 node. Set the node to 
impute U for unknown class variable values and the overall mean for unknown interval variable 
values. Create imputation indicators for all imputed inputs. 

Regression node to the diagram and connect it to the Impute

e.   Choose the stepwise selection and validation error as the selection criterion. 

 node. 

f.   Run the Regression node and view the results. 

Which variables are included in the final model?   

Which variables are important in this model?   

What is the validation ASE?   

g.   In preparation for regression, are any transformations of the data warranted?   

Why or why not?   

h.   Disconnect the Impute node from the Data Partition

i.   Add a 

 node. 

Transform Variables node to the diagram and connect it to the Data Partition

j.   Connect the 

 node. 

Transform Variables node to the Impute

k.   Apply a log transformation to the DemAffl and PromTime inputs. 

 node. 

l.   Run the Transform Variables

m.   Rerun the 

 node. Explore the exported training data. Did the transformations 
result in less skewed distributions?   

Regression

Do the selected variables change?   

 node. 

How about the validation ASE?   

n.   Create a full second-degree polynomial model. How does the validation average squared error for 
the polynomial model compare to the original model?   
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4.8 Chapter Summary 

Regression models are a prolific and useful way to create predictions. New cases are scored using a 
prediction formula. Inputs are selected via a sequential selection process. Model complexity is controlled 
by fit statistics calculated on validation data. 

To use regression models, there are several issues with which to contend that go beyond the predictive 
modeling essentials. 

1. A mechanism for handling missing input values must be included in the model development process. 

2. A reliable way to interpret the results is needed. 

3. Methods for handling extreme or outlying predictions should be included. 

4. The level-count of a categorical should be reduced to avoid overfitting. 

5. The model complexity might need to be increased beyond what is provided by standard regression 
methods. 

One approach to this is polynomial regression. Polynomial regression models can be fit manually with 
specific interactions in mind. They can also be fit autonomously by selecting polynomial terms from a list 
of all polynomial candidates. 
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Regression Tools Review

96

Replace missing values for interval (means) 
and categorical data (mode). Create a 
unique replacement indicator.

Create linear and logistic regression 
models. Select inputs with a sequential 
selection method and appropriate fit 
statistic. Interpret models with odds ratios.

Regularize distributions of inputs. Typical 
transformations control for input skewness 
via a log transformation.

continued...  

97

Regression Tools Review

97

Consolidate levels of a nonnumeric input 
using the Replacement Editor window.

Add polynomial terms to a regression either 
by hand or by an autonomous exhaustive 
search.
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4.9 Solutions 

Solutions to Exercises 

1.   Predictive Modeling Using Regression 

a.   Return to the Chapter 4 Organics diagram in the Exercises project. Use the StatExplore tool 
on the ORGANICS data source. 

1)   Connect the StatExplore node to the ORGANICS node as shown. 
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2)   Run the StatExplore node and view the results. 

 

b.   In preparation for regression, is any missing values imputation needed? If yes, should you do this 
imputation before generating the decision tree models? Why or why not? 

Go to line 38 in the Output window. Several of the class inputs have missing values. 
Class Variable Summary Statistics 

                         Number 
                           of                            Mode                    Mode2 
Variable          Role   Levels  Missing  Mode        Percentage    Mode       Percentage 
DemClusterGroup  INPUT      8       674   C             20.55       D            19.70 
DemGender        INPUT      4      2512   F             54.67       M            26.17 
DemReg           INPUT      6       465   South East    38.85       Midlands     30.33 
DemTVReg         INPUT     14       465   London        27.85       Midlands     14.05 
PromClass        INPUT      4         0   Silver        38.57       Tin          29.19 
TargetBuy        TARGET     2         0   0             75.23       1            24.77 

Go to line 65 of the Output window. Most of the Interval inputs also have missing values. 
Interval Variable Summary Statistics 

                                   Std.        Non 
Variable    ROLE        Mean    Deviation    Missing    Missing    Minimum    Median      Maximum 
DemAffl     INPUT       8.71        3.42      21138       1085       0.00         8         34.00 
DemAge      INPUT      53.80       13.21      20715       1508      18.00        54         79.00 
PromSpend   INPUT    4420.59     7559.05      22223          0       0.01      2000     296313.85 
PromTime    INPUT       6.56        4.66      21942        281       0.00         5         39.00 

You do not need to impute before the Decision Tree node. Decision trees have built-in ways 
to handle missing values. (See Chapter 3.) 
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c.   Add an Impute node to the diagram and connect it to the Data Partition node. Set the node to 
impute U for unknown class variable values and the overall mean for unknown interval variable 
values. Create imputation indicators for all imputed inputs. 

 

1)   Select Default Input Method  Default Constant Value

2)   Type U for the Default Character Value. 

. 

 

3)   Select Indicator Variable Type  Unique

4)   Select 

. 

Indicator Variable Role  Input. 
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d.   Add a Regression node to the diagram and connect it to the Impute node. 

 

e.   Select the Stepwise selection and Validation Error as the selection criterion. 

 

f.   Run the Regression node and view the results. Which variables are included in the final model? 
Which variables are important in this model? What is the validation ASE? 

1)   The Results window opens. 
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2)   Go to line 664 in the Output window. 
The selected model, based on the CHOOSE=VERROR criterion, is the model trained in 
Step 6. It consists of the following effects: 
 
Intercept  IMP_DemAffl  IMP_DemAge  IMP_DemGender  M_DemAffl  M_DemAge  M_DemGender 

3)   The odds ratios indicate the effect that each input has on the logit score. 
                                                       Point 
Effect                                              Estimate 
IMP_DemAffl                                            1.283 
IMP_DemAge                                             0.947 
IMP_DemGender       F vs U                             6.967 
IMP_DemGender       M vs U                             2.899 
M_DemAffl           0 vs 1                             0.708 
M_DemAge            0 vs 1                             0.796 
M_DemGender         0 vs 1                             0.685 

4)   The validation ASE is given in the Fit Statistics window. 
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g.   In preparation for regression, are any transformations of the data warranted? Why or why not? 

1)   Open the Variables window of the Regression node. 

2)   Select all Interval inputs. 
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3)   Select Explore…. The Explore window opens. 

 

Both Card Tenure and Affluence Grade have moderately skewed distributions. 
Applying a log transformation to these inputs might improve the model fit. 

h.   Disconnect the Impute node from the Data Partition

i.   Add a 

 node. 

Transform Variables node to the diagram and connect it to the Data Partition

j.   Connect the 

 node. 

Transform Variables node to the Impute node. 
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k.   Apply a log transformation to the DemAffl and PromTime inputs. 

1)   Open the Variables window of the Transform Variables node. 

2)   Select Method  Log for the DemAffl and PromTime inputs. 

 

3)   Select OK

l.   Run the 

 to close the Variables window. 

Transform Variables

1)   The easiest way to explore the created inputs is to open the Variables window in the 
subsequent Impute node. Make sure that you update the Impute node before opening its 
Variables window. 

 node. Explore the exported training data. Did the transformations 
result in less skewed distributions? 
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2)   With the LOG_DemAffl and LOG_PromTime inputs selected, select Explore…. 

 

The distributions are nicely symmetric. 

m.   Rerun the Regression

1)   Go to line 664 of the Output window. 

 node. Do the selected variables change? How about the validation ASE? 

The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 6. 
It consists of the following effects: 
 
Intercept IMP_DemAge IMP_DemGender  IMP_LOG_DemAffl  M_DemAge  M_DemGender  M_LOG_DemAffl 

2)   IMP_LOG_DemAffl and M_LOG_DemAffl replace IMP _DemAffl and  
M_ _DemAffl, respectively. 
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3)   Apparently the log transformation actually reduced the validation ASE slightly. 

 

n.   Create a full second-degree polynomial model. How does the validation average squared error for 
the polynomial model compare to the original model? 

1)   Add another Regression node to the diagram and rename it Polynomial Regression. 
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2)   Make the indicated changes to the Polynomial Regression Properties panel. 

 

3)   Go to line 1598 
The selected model, based on the CHOOSE=VERROR criterion, is the model trained in Step 7. 
It consists of the following effects: 
 
Intercept  IMP_DemAge  IMP_DemGender  IMP_LOG_DemAffl  M_DemAge  
M_DemGender*M_LOG_DemAffl IMP_DemAge*IMP_DemAge  IMP_LOG_DemAffl*IMP_LOG_DemAffl 

4)   The Polynomial Regression node adds additional interaction terms. 

5)   Examine the Fit Statistics window. 

 

The additional terms reduce the validation ASE slightly. 
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Solutions to Student Activities (Polls/Quizzes) 

21

4.01 Multiple Choice Poll – Correct Answer
What is the logistic regression prediction for the indicated 
point?
a. -0.243
b. 0.56
c. yellow
d. It depends …

21
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