

SESS

SESS, Socio-Ecological Systems Simulation centre formed : 2020 with 8 staff, now, 16+ staff over 100 articles, including in Nature & Science

Chris Topping : centre leader, ALMaSS programmer since 1998

Yoko : bee ecology

Jordan : species & environment modelling

Jamie & Geoff : static landscape modelling

Xiaodong : modelling, scripting, ML, HPC, parallel programming

Sara: modelling, SOME Astrid : scenarios

computing

Trine : environmental modelling

Ela : species and environment modelling Peet : species modelling

- Bjarke : modelling, scripting, HPC NN: social scientist
- AARHUS UNIVERSITY

ECOSCIENCE

Luna : admin, modelling, computing

James & Natasha : socio-economics

uCloud : ca. ½ M Genome : ca. 1 M LUMI : ca. 1 M

GPU core hours per

EAST.

20 K

CPU

20 K (world's 3rd most powerful HPC)

vear

https://projects.au.dk/sess//

+ Collaborators in : Poland, Portugal, Italy, Germany, The Netherlands, Belgium, UK, Finland, France, Ireland, Spain

The other "team members" : the scripts ... Static landcape models : python, ESRI / OpenGIS Landscape dynamics, species models : C++ ca. 120K lines of code : Windows, Linux, OpenSource, Gitlab, GitKraken, VScommunity, MiDox, Cmake, QT, ...

The other "team members" : the HPCs ...

WHY? **ENVIRONMENTAL RISK** Pesticide regulations, non-target organism effects, multiple stressors, multiple exposure, the recovery fallacy, ... **BIODIVERSITY LOSS Pollinator** issues Mitigation measures, e.g. organic farming practices WILDLIFE ECOLOGY Species management, hare, goose, etc. population ecology needs reliable predictive models that are alternatives to the the common thread : fundamentally analytical & reductionist approaches, e.g. density dependence ALMaSS : Systems based approach with complex modelling HOW? emergent & dynamic structures simula responsive to input changes, with high predictive powers **European Commission** Horizon2020, HorizonEurope ... 5 projects, 3 as lead FOR National Agencies and Research Programmes Danish-EPA, GUDP, ICROFS, LBST, ICØL, Agri Agency, WHOM? Dutch EPA, German Environmental Agency (UBA) EFSA roadmaps e.g. Partnership for Environmental European Food Safety Authority (EFSA) : **Risk Assessment (PERA)**

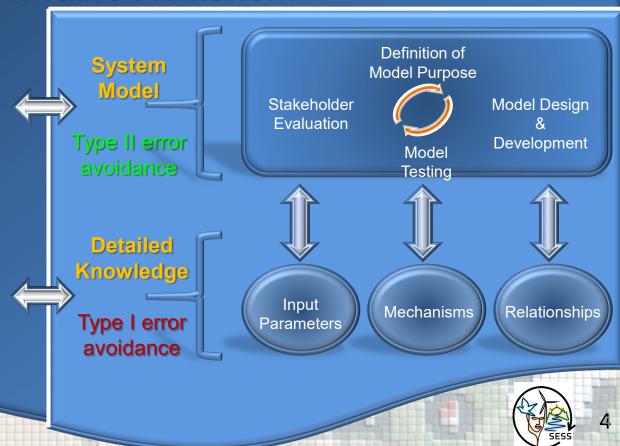
AARHUS UNIVERSITY ECOSCIENCE 7 major projects completed since 2020 each of > 3 M kr 10 current projects each of > 3 M kr

ALMaSS and "alternatives to fundamentally analytical & reductionist approaches"

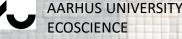
Charles J. Krebs stated "density-dependent relationships occur often but are not repeatable and are an unreliable basis for a predictive ecology"

... but expressed fears that complex hypotheses without rigorous (i.e. type I, false-positive error resistant) scientific constraints could reduce ecologists to storytellers

ALMaSS :


No!... story-telling is exactly what is needed

The **narrative frames** the **model** in terms of its context within the system it represents:

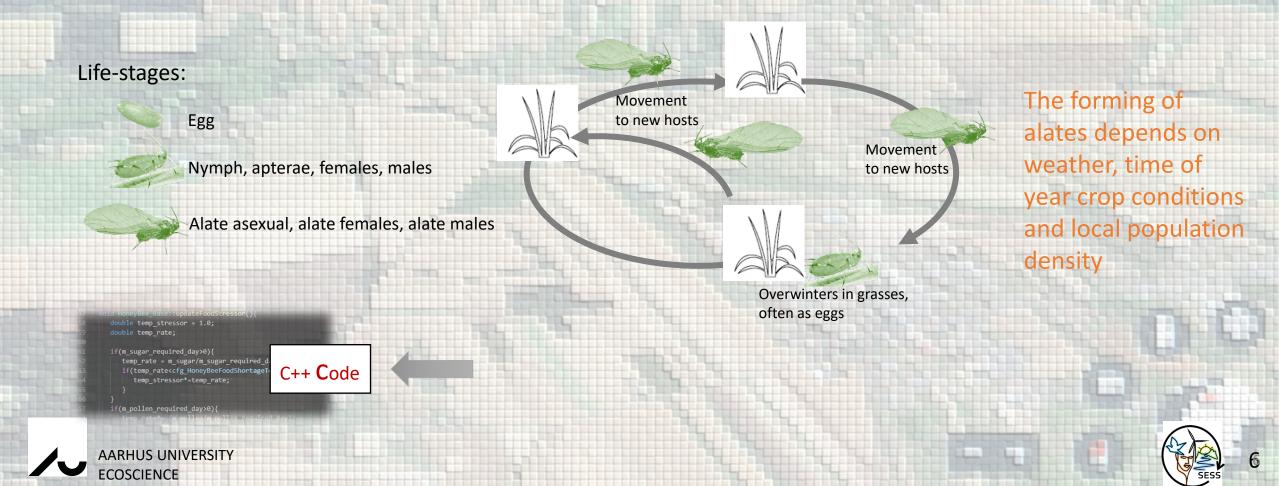

- what to include + what to exclude
- model results affect the narrative changes in the narrative alter the model

replicates baseline x x x x x ... scenario 1 🖈 🛪 🛪 🫪 🦛 ... scenario 2 🖈 🖈 🤺 🤺 ...

Narrative Framework


Some of the species modelled in ALMaSS

Each represented as a very highly detailed mechanistic model


also People (the "M" in ALMaSS), e.g. farmers, hunters ... their socio-economics, motivations, aspirations, knowledge, possibilities, networks, etc.

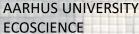
An example ...

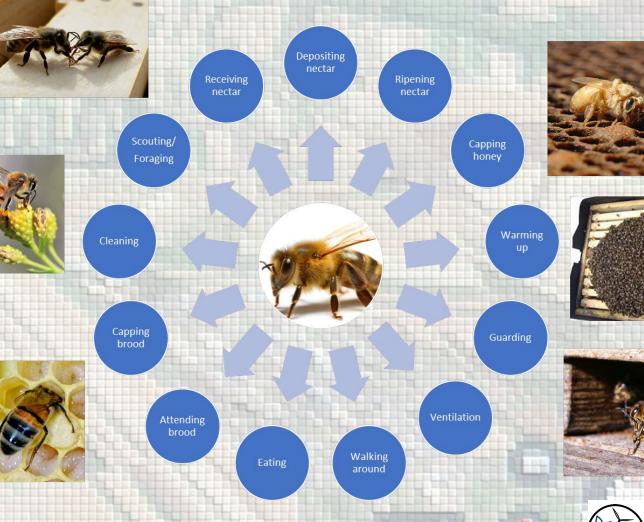
The pea aphid (*Acyrthosiphon pisum*) and grain aphid (*Sitobion arvenae*). Their life-cycles is relatively simple as far as aphids go, but still have very complex spatial dynamics.

Another example ...

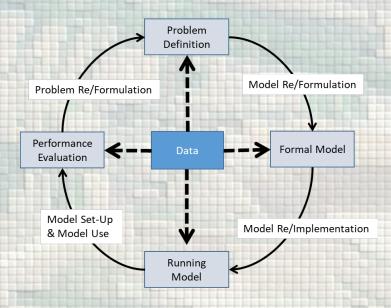
ApisRAM

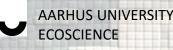
- ... the ALMaSS model of the honey bee
- a key pollinator
- with a complex ecology, inside and outside of the colony




if(m_sugar_required_day>0){
 temp_rate = m_sugar/m_sugar_required_
 if(temp_rate<cfg_HoneyBeeFoodShortage'
 temp_stressor*=temp_rate;</pre>

if(m_pollen_required_day>0){

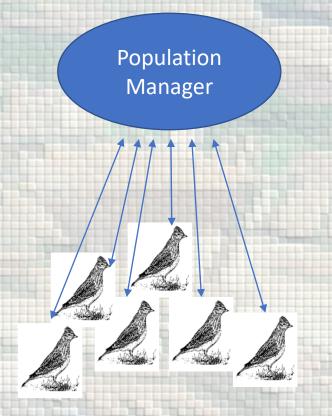


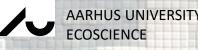

PRODUCTION OF AN ALMASS SPECIES MODEL

Each species model involves :

- production of a formal model
- creation the 'agent life story'
- how to represent this in code
- model testing
- sensitivity analysis
- uncertainty analysis

- There are many steps, many of which are iterative
- Requires skills in programming, modelling and the agent ecology and behaviour
- A team approach



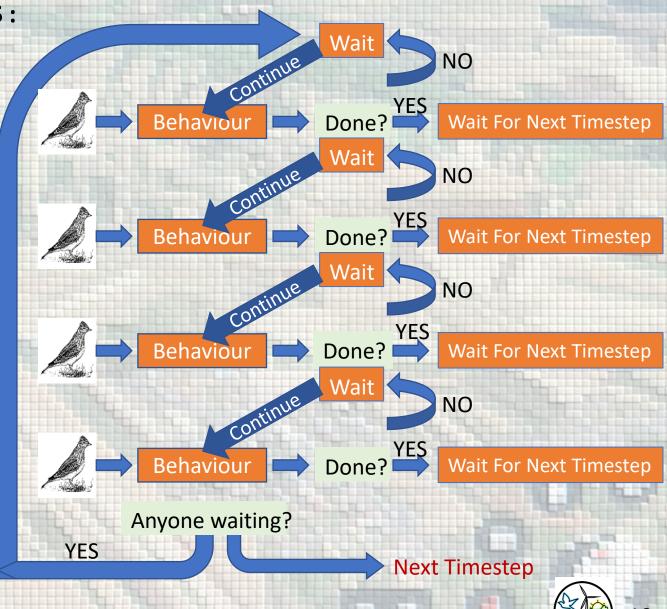


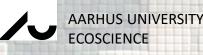
PUTTING AN ALMaSS SPECIES MODEL INTO ALMaSS :

- potentially millions of agents operating at once
 e.g. 48 million concurrent beetle agents have been recorded
- their behaviours, counts etc. are controlled by the population manager
- the population manager is an 'instance' of a 'class' and exists as an 'object' in the ALMaSS code
- the population manager is like an administrator for the agent models
- · the population manager controls agent activity at each 'timestep'

PUTTING AN ALMASS SPECIES MODEL INTO ALMASS :

Time – one of the big challenges

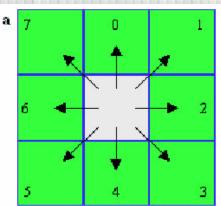

"Timesteps" :

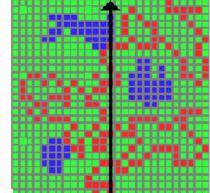

- the landscape model : 1 day timesteps
- for agents, as necessary, e.g. 10 mins for bees

Timestep integration is constrained by serial computing

It is possible for an agent to exhibit many behaviours during a timestep

ALMaSS deals with this using 'step' functions

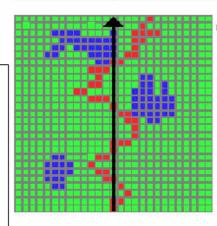



PUTTING AN ALMaSS SPECIES MODEL INTO ALMaSS :

Agent movement in space – the other big challenge

- real organisms perceive their surroundings in highly complex ways
- replicating this in the model is impossible
- so ALMaSS uses proxies

- E.g. : vole movement design :
 - represent different types of movement
 - some more directed than others
 - but always avoiding unsuitable habitats



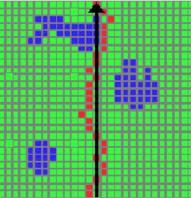
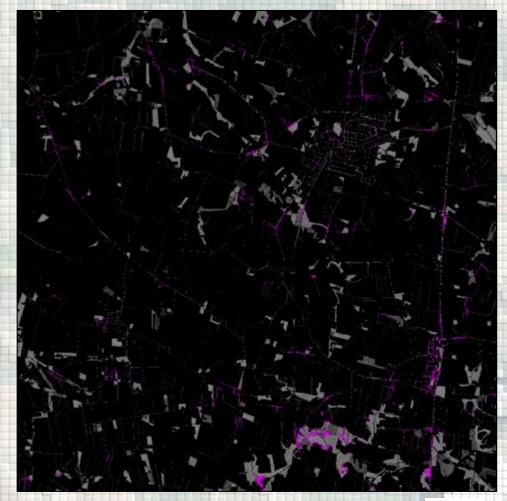
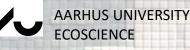


Figure 1. Movement in the vole.

Green squares are suitable habitat, blue are totally unsuitable. The arrow indicates direction of preferred movement, and the red squares indicate the path taken.

- a The 8 directions possible for each step
- b Standard vole movement, with a weight of 1
- c Intermediate movement
- d Movement used in dispersal with a weight of 3





Species interactions \rightarrow parallel programming

- ladybird and two species of aphid simulated together
- individuals of each species interact in time and space much as in the real world
- requires a parallel programming approach to ALMaSS

COSCIENCE

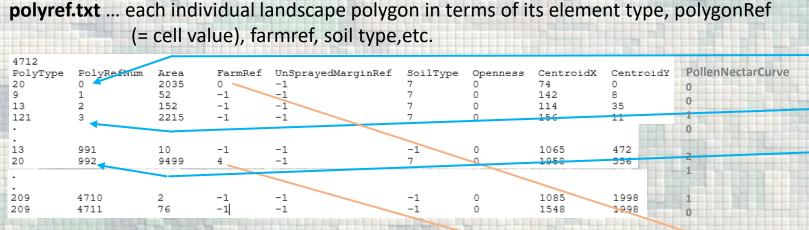
A static component :

essentially a landuse / landcover category map model of all relevant landscape components **including individual fields**

- a 1x1 m raster of each contiguous LS part as a "parcel"
- a 10x10 km landscape typically has 50 K ightarrow 100 K parcels

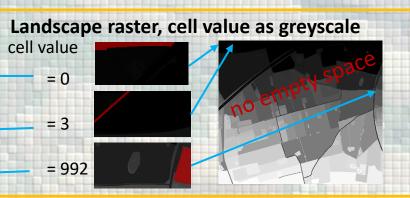
with per parcel information on :

- unique ID, type, parcel size (i.e. number of raster cells)
- field parcel → farm linkage (anonymised farm "ID")
- parcel majority soil type (texture categories)
 - parcel pollen and nectar production related factors


That drives, in an ALMaSS run, dynamic simulation of :

- arable field parcel crop type
- field parcel crop management
- landscape parcel biomass
- field parcel pesticide application / LS parcel pesticide drift
 parcel pollen and nectar production
- all relative to field farm type (8 conventional, 8 organic + other) and driven by hourly / daily ERA5 weather data

And all synced together with the lives of the species organism agents



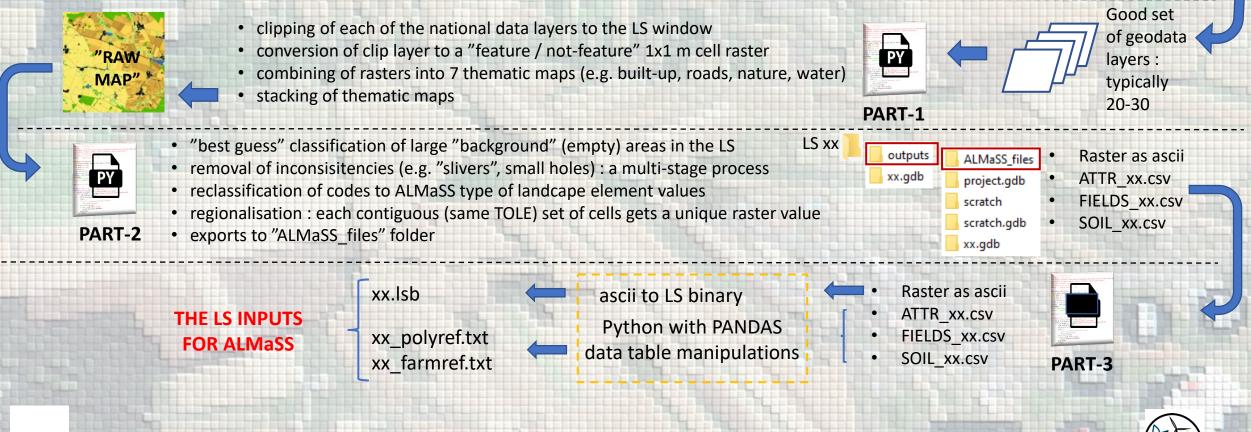
THE STATIC LANDSCAPE MODEL

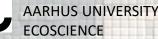
This file, this example, tells an ALMaSS run that

- there are 4712 individual polygons in this landscape window
- the polygon that is described by the pixels with pixel value "0" is :
 - a landscape element type 20 polygon, which is one of the farm field element types
 - comprises 2035 pixels is a field of the farm with the farm reference 0
 - has soil type 7 as its majority soil type etc. etc.
- the polygon that is described by the pixels with pixel value "3" is :
 - a landscape element type 121 polygon, which is "Large Road"
 - comprises 2215 pixels etc. etc.
- the polygon that is described by the pixels with pixel value "992" is :
 - a landscape element type 20 polygon, which is one of the farm field element types
 - comprises 9499 pixels is a field of the farm with the farm reference 4
 - has soil type 7 as its majority soil type
 etc. etc.

farmref.txt ... that relates the farm field polygons in the landscape window to their farm type code, via the FarmRef (= ID)

17			
D 1	32 32	This	s file tells an ALMaSS run that :
2	34	\succ	the fields in this LS window belong
3 4	34 32		to 17 different farms
5	33	\triangleright	the LS polygons with farmref value
6 7	34 34		"0", "1", "4", are part of farms of
8 9	34 33		ALMaSS farmtype 32
10	32	\triangleright	the LS polygons with farmref value
11 12	38 34		"2", "3", "6", are part of farms of
13 14	33 33		ALMaSS farmtype 34
15	35	\succ	etc.
16	34		



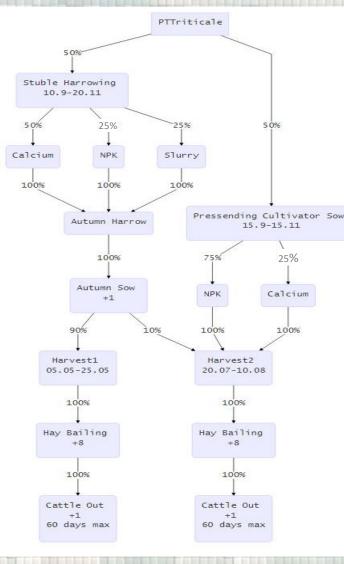

PRODUCTION OF THE STATIC LANDSCAPE MODELS

Scripted sequence of raster and vector GIS processing steps + table data processing Same overall sequence for all LS windows, but inner-details vary associated with national source data differences • Digital topographical databases (SDFE Geodanmark)

- Data on protected areas / habitats (Arealinformation)
- Additional geodata data e.g. BaseMap
- LBST Internet Field Map ("marker", "oekologiske arealer")
- Animal Identification and Registration System (CHR)

PART-0 : pre-processing of raw GIS geodata, as needed ; may include use of additional data to <u>determine field farm ID and farm type</u>; analysis of crops per farm type to determine farm type crop rotations; done per LS window or national

INCLUSION OF LANDSCAPE DYNAMICS : CROP MANAGEMENT

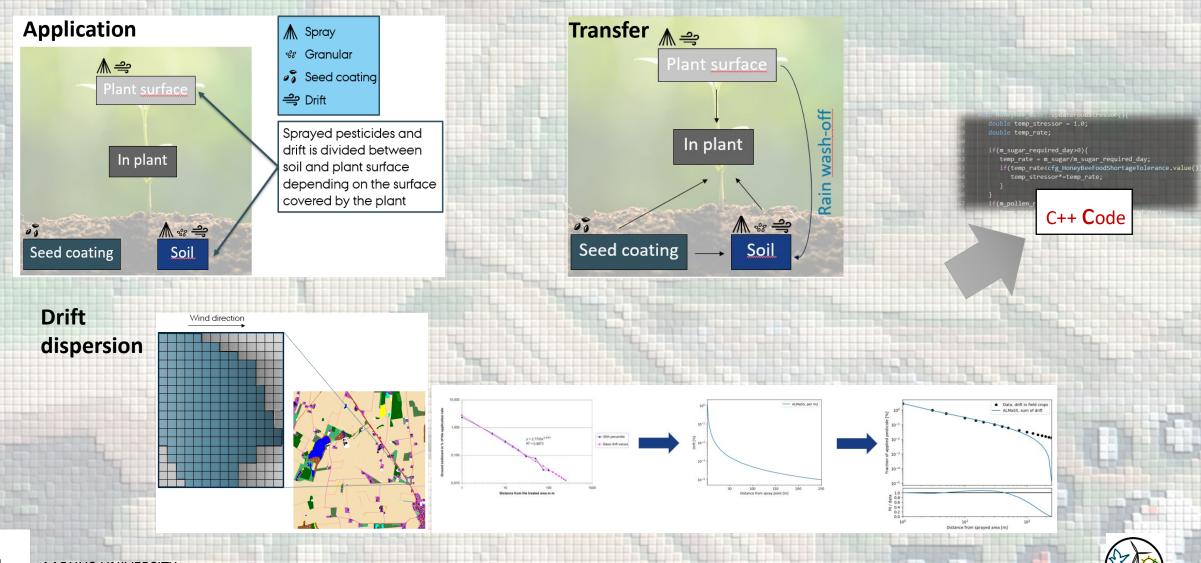

Crop management • Farmer's advisors • Farmer's associations • Farmers (field management records)

Interviews / Enquires

talks to the LS via the lsb, polyref, ALMaSS run farmref file triplet

double temp_stressor = 1.0; double temp_rate; if(m_sugar_required_day>0){ temp_rate = m_sugar/m_sugar_required_d if(temp_rate<cfg_HoneyBeeFoodShortageT. temp_stressor*=temp_rate; } }

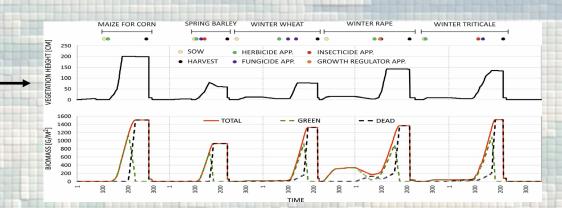
if(m_pollen_required_day>0){



AARHUS UNIVERSITY

ALMaSS includes Crop Management code for > 300 crops

INCLUSION OF LANDSCAPE DYNAMICS : PESTICIDE APPLICATION, COMPARTMENT TRANSFER AND DISPERSION



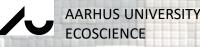
AARHUS UNIVERSITY ECOSCIENCE

+ DYNAMIC LANDSCAPE MODELLING OF :

Vegetation biomass Pollen and nectar qualities and quantities Grazing patterns

+ INCLUSION OF LANDSCAPE CHANGE SCENARIOS

Farming with addition of uncultivated field boundaries, flower strips, hedge banks, field strips, field patches, set-aside, etc. - The GUDP ICROFS Organic RDD+ project **Organic+**



Baseline landscape (ALMaSS LS model) ALMaSS run scenario 1: Set-aside, 10 % by area

ALMaSS run scenario 2: Field strips 6 m, 7% by area

back to ... PRODUCTION OF THE STATIC LANDSCAPE MODELS

THE LS INPUTS FOR ALMaSS xx.lsb xx_polyref.txt xx_farmref.txt WHY NOT USE ESRI FORMAT OR SOME OTHER EXISTING GIS DATA MODEL?

Yes, ALMaSS can run on a PC in Windows

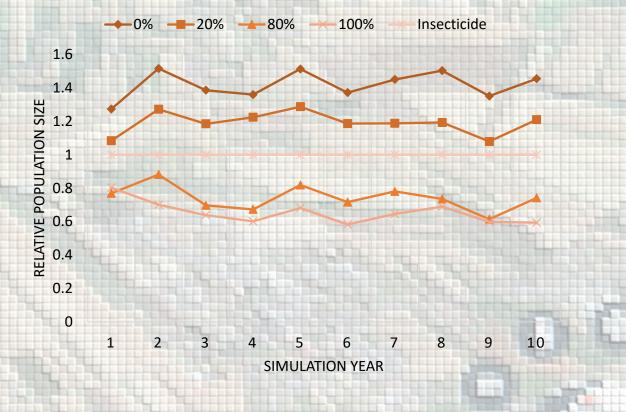
Reality : SCALING-UP

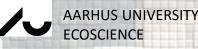
model testing, validations, results runs ... dozens of landscapes, multiple species, multiple senarios, 30+ year runs, many replications

ALMaSS is coded to make **highly efficient** use of core memory, including bit addressing

xx_polyref.txt xx_farmref.txt

xx.lsb


ALMaSS : some results examples


ALMaSS as a virtual ("in silico") laboratory – to test scenarios for impact

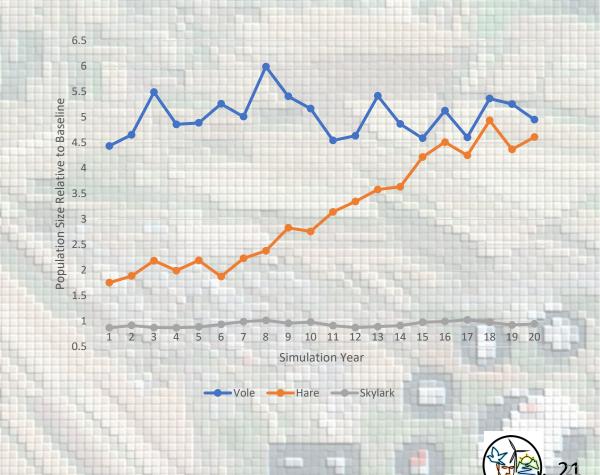
a single species (spider)

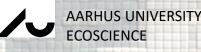
a single management action (application of biopesticide) with different levels:

Erigone atra population size under four assumptions of double application of biopesticide (0-100%) mortality compared to a single insecticide application (80% Mortality) in monoculture

+

ALMaSS : some results examples


Stacking and optimising managements (client : Horizon2020, EcoStack)


stack managements and test across different species:

- e.g. a combined management scenario of :
- biocide
- field margin grass/flowers
- diversified rotation
- set-aside

compared to baseline

Relative population size of three vertebrate species after the application of stacked management scenarios

ALMaSS : some results examples

Mapping bat pesticide exposure risk

... coincidence of bat activity and high pesticide application in orchards and bush fruit fields (client : Danish Environment Protection Agency)

organic field

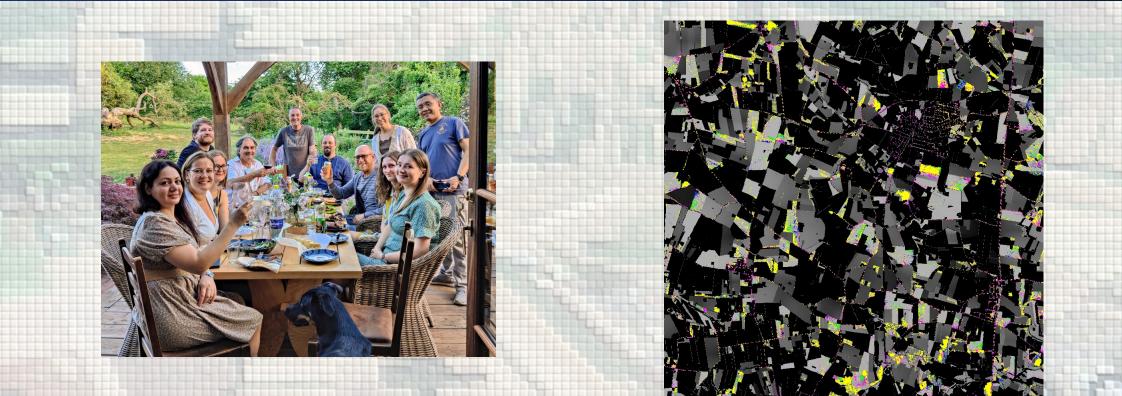
orch	ard / bush fruit				
Modelled bat activity (BA April to September					
log (sum of AMJJAS modBA)					
0.9265 - 1.090	1.439 - 1.501				
1.091 - 1.181	1.502 - 1.565				
1.182 - 1.254	1.566 - 1.631				
1.255 - 1.322	1.632 - 1.691				
1.323 - 1.379	1.892 - 1.747				
1.380 - 1.438	1.748 - 1.835				

BA : high PA: low (organic) **BA**: low

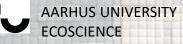
PA : medio

BA : high PA : high (conventional orchard)

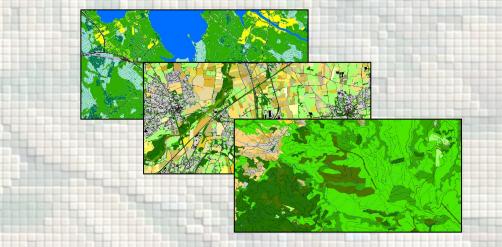
BA: medio PA: medio


ALMaSS simulated pesticide application (PA) April to September log (sum of AMJJAS simF) 8021-0.9109 9110 - 1.220 221 - 1.529 30 - 1.837

-2.148


2 km

Interested in SESS / ALMaSS – please contact me or the SESS team



ALMaSS is run as a collaborative science project – we are happy to help if you want to use it or develop new models

Thank you for your attention

- Website: <u>www.sess.au.dk</u>
- LinkedIn: <u>https://www.linkedin.com/company/the-social-</u> ecological-systems-simulation-sess-centre-aarhus-university
- <u>X: https://twitter.com/sess_au?s=21&t=UWY7hlmN_FKoJKGdIliyxA</u>
- Instagram: SESS CENTRE
- Wikipedia, YouTube: ... work-in-progress

